《定性研究方法》PPT課件.ppt_第1頁
《定性研究方法》PPT課件.ppt_第2頁
《定性研究方法》PPT課件.ppt_第3頁
《定性研究方法》PPT課件.ppt_第4頁
《定性研究方法》PPT課件.ppt_第5頁
已閱讀5頁,還剩186頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

第六章 定性研究方法,第一節(jié) 定性研究方法概述 第二節(jié) 實地研究方法 第三節(jié) 訪談方法 第四節(jié) 文獻研究方法 第五節(jié) 扎根理論的研究方法,第一節(jié) 定性研究概述,一、定性研究的方法論基礎 1、人文主義方法論 社會文化領域不同于自然世界,人有自由意志; 自然科學研究方法不適合社會文化領域,應該采取理解、闡釋的方法,深入了解人的行為動機、意義,全面理解各種具體、獨特的社會歷史現(xiàn)象;,2、韋伯的闡釋社會學 社會現(xiàn)象不是完全外在于人類的客觀事物,而是由人及有意義的社會性的構(gòu)成; 對人們行動的理解是社會研究的基本方法;,二、定性研究方法與定量研究方法比較,詳見498頁的表格。,第二節(jié) 實地研究方法,一、參與觀察法 參與觀察法:研究者長期深入到所研究的群體或社區(qū)之中,直接參與研究對象的日常生活,對置身其中的社會現(xiàn)象進行深入觀察。 嚴景耀 罪犯研究; 神秘顧客 馬林諾夫斯基的原始部落研究 懷特的街角社會研究,非參與觀察:研究者在被觀察現(xiàn)象或群體之外,它是對現(xiàn)象發(fā)生、發(fā)展和變化的過程進行遠距離觀察。 涂鴉研究;,二、參與觀察法的優(yōu)點,1、獲得豐富的一手資料; 2、能從研究對象的真實生活中掌握和記錄資料; 3、采用無結(jié)構(gòu)式觀察,根據(jù)資料提煉理論,而不把自己的觀點強加給研究對象。,三、參與觀察法的局限性,1、研究結(jié)論的推論范圍受限制。 2、代表性較低。 3、容易價值介入,喪失客觀立場。,四、參與觀察法的技巧,1、如何進入田野:如何讓被研究者接納? 2、掌握好觀察進度。 3、不但要進得去,還要出得來。,五、實地觀察的過程,準備 實施 資料處理,六、實地觀察的信度和效度,1、效度 在觀察階段選擇適當?shù)挠^察方法和界定觀察對象; 在實施階段影響效度的因素:被觀察者的反應、觀察者的主觀因素、觀察者本人的感官和記憶影響。 2、信度 不同觀察者的相關度; 同一觀察者在不同時間觀察的符合度; 不同觀察者在不同時間觀察的符合度。,第三節(jié) 訪談法,一、訪談法的類型 (一)、根據(jù)訪談對象 個別訪談 群組訪談(座談會):將若干訪談對象集中起來同時進行訪談。,(二)、根據(jù)訪談內(nèi)容和訪談方式 結(jié)構(gòu)式訪談: 無結(jié)構(gòu)式訪談:不是根據(jù)一定的程序和事先設計好的問卷進行,而是圍繞訪談主題或訪談范圍,由訪問員與被訪者進行比較自由、深入和細致的交談。,無結(jié)構(gòu)式訪談的類型: 焦點訪問:主要搜集經(jīng)過某一特殊經(jīng)驗之后的態(tài)度變遷資料。 深度訪談 客觀陳述法:訪問者鼓勵被訪者把自己的意見、觀點、行為以及他所了解的社會事實客觀地加以陳述,主要用于全面地了解客觀事實及各種被訪者的意見、態(tài)度。,二、深度訪談法,深度訪談法是指研究者與受訪者之間反復交談,其目的是為了受訪者用自己的語言表述的其生活、經(jīng)歷或狀態(tài)的觀點。,(一)、深度訪談法的特點 1、訪談是平等的相互交談; 2、問題是無結(jié)構(gòu)化或半結(jié)構(gòu)化; 3、面對面聽取被訪者的理解; 4、要反復訪談,也可以群體訪談。,(二)、深度訪談的類型 非正式的、聊天式的訪談; 半標準化的訪談 標準化的開放式訪談,(三)、深度訪談的技術 1.提問的技術 提問題要清楚; 每次只問一個問題; 提出真正的開放式問題; 先問經(jīng)驗和行為的問題; 從一般到特殊; 深入挖掘問題和廓清回答; 應當避免敏感性的問題。,2、記錄手段 3、訪談過程注意事項 一開始介紹訪談的意義和內(nèi)容,價值中立; 不要使自己影響被訪者; 放和收的把握; 建立和諧的氣氛。 4、訪談資料的分析,三、焦點群體訪談法,焦點群體訪談法:圍繞一個“焦點”內(nèi)容,在小型群體內(nèi)進行集中討論和訪談的方法。通常在一段時間內(nèi)的多種場合進行。,焦點群體訪談法的特點(優(yōu)點和缺點),優(yōu)點: 1、能獲得其他方法不易獲得的訪談對象的態(tài)度、情感、信仰和反應。 2、該方法可以應用到研究的各個階段。 3、該方法有助于形成研究假設,有助于設計問卷和訪談提綱,還有助于定性研究和定量研究的結(jié)合。 4、互動性強。,缺點: 代表性差 被訪者相互影響,四、個案研究方法,個案研究的目的是為了深刻揭示蘊涵在研究對象中豐富的個體特性和詳細的事件發(fā)展過程,通過深入的觀察或訪談詳細、具體和生動的研究資料,并對個體行為或現(xiàn)狀進行具體的個性解釋。 比如:金翼江村經(jīng)濟,個案研究的局限: 代表性問題; 忽視宏觀社會因素;,擴展個案研究法: 擴充個案的類型和數(shù)量; 將宏觀研究和微觀研究的視角結(jié)合起來。 如:我們臺灣這些年,第四節(jié) 文獻研究方法,一、文獻法的類型和特點,文 獻 法,定性方法,定量方法,歷史文本分析,話語分析,個人文獻分析,歷史比較分析,二次數(shù)據(jù)分析,現(xiàn)存統(tǒng)計文獻分析,文獻法的優(yōu)點: 1、可研究那些不可能接近的研究對象; 2、具有非介入性和無干擾性的優(yōu)點; 3、適于做縱貫研究和趨勢研究; 4、費用較低。,文獻法的缺點: 1、文獻質(zhì)量無法控制; 2、重要文獻不易獲得; 3、編碼困難,難以數(shù)量化; 4、缺乏統(tǒng)一格式,資料間難以對比;,二、口述史方法,1、定義 口述史方法主要依賴對于老年人進行訪談的方法,這些老年人提供各個人生階段的事件、態(tài)度和活動的回顧性資料。,2、口述史的優(yōu)點 可以填補文字歷史的遺漏或糾正文字歷史上的非真實記載,更完整地展歷史全貌; 可以獲得邊緣群體的資料。,3、口述史方法的缺點 回憶不確切,信息不可靠; 故意隱瞞 受限于一定時期、場域和場合。,4、口述史方法的操作,三、內(nèi)容分析方法,內(nèi)容分析方法是對各種文獻資料的內(nèi)容進行客觀、系統(tǒng)的和定量的描述和分析,它是將定量方法和定性方法相結(jié)合的文獻法。 案例:美國通過分析德國報紙,獲取法西斯的重要情報; 日本通過分析三年的人民日報(1964-1966),準確判斷大慶油田的位置、產(chǎn)量,設計所需設備,擊敗競爭對手。,第五節(jié) 扎根理論的研究方法,一、扎根理論的概念 扎根理論是使用一整套系統(tǒng)的程序,建立或發(fā)展出歸納性理論的定性研究方法。,二、扎根理論研究過程,1、研究者根據(jù)理論洞察力不斷歸納和比較所收集到的調(diào)查資料,把握其中相同的主要特質(zhì)。 2、研究者將這些主要特質(zhì)與其他有關現(xiàn)象進行比較,建立起變量間的假設關系。 3、進一步調(diào)查,驗證研究假設。,三、扎根理論研究的方法和技術,1、開行性編碼 將資料分解、檢視、比較和概念化的過程。 2、軸向編碼 研究者根據(jù)所分析現(xiàn)象的條件、背景、行動或互動的策略和結(jié)構(gòu),將各個概念聯(lián)系起來。 3、選擇性編碼 選擇核心概念,將它系統(tǒng)地與其他范疇聯(lián)系起來,驗證它們之間的關系,并將概念化為完備的范疇補充完成的過程。,4、過程分析 5、撰寫備忘錄,第七章 資料的處理,第一節(jié) 原始資料的審核 第二節(jié) 定性資料的整理 第三節(jié)定量資料的整理,第一節(jié) 原始資料的審核,一、定性資料的審核 1、實地觀察記錄的審核 重點對觀察者與被觀察者之間的“觀察距離”進行審核。具體來說: (1)隨時檢查觀察結(jié)果是否在研究項目所設定的范圍內(nèi); (2)對比檢查其他參與研究人員的觀察結(jié)果; (3)利用其他相關研究獲得相關資料,對觀察結(jié)果進行對比檢驗; (4)對觀察時間長短進行檢驗。,2、無結(jié)構(gòu)式訪談記錄的審核 重點是要對訪談雙方在互動交流過程中的相互影響進行審核。 (1)要對被訪問者對訪問者的態(tài)度進行審核; (2)要對被訪問者對訪問的內(nèi)容和意義的理解進行審核; (3)要對訪問者的提問方式進行審核; (4)側(cè)面審核。,3、文字形式資料的審核 主要包括對資料的外在形式和內(nèi)在內(nèi)容兩方面的審核。 (1)作者的背景; (2)形成時間; (3)注重事實與推斷、價值判斷的區(qū)分 (4)真?zhèn)涡?二、定量資料的審核,1、問卷資料審核 完整性:樣本容量、回收率、有效回收率等。 真實性:回答的真實性和調(diào)查過程的真實性。 準確性 2、二次數(shù)據(jù)資料的審核,第二節(jié) 定性資料的整理,一、資料的分類 二、資料的匯編,第三節(jié) 定量資料的整理,一、問卷編碼 問卷編碼就是將問卷中以文字形式表述的問題和答案轉(zhuǎn)換成計算機能夠識別的數(shù)字或其他符號的過程。 預編碼 后編碼,二、數(shù)據(jù)錄入 Spss(社會科學軟件統(tǒng)計包) 三、數(shù)據(jù)清理 人為誤差的清理; 對統(tǒng)計分析結(jié)果影響較大的特殊數(shù)值;,人為誤差清理: 有效范圍清理; 邏輯一致性清理; 數(shù)據(jù)質(zhì)量抽查;,第八章 單變量的統(tǒng)計描述,第一節(jié) 描述頻數(shù)分布 第二節(jié) 分布趨勢測量 第三節(jié) 正態(tài)分布與標準值,第一節(jié) 描述頻數(shù)分布,一、指標描述 頻數(shù)(f):變量具有共同性質(zhì)的取值出現(xiàn)的次數(shù)。 比例(P):f/N 比率(R) 對比值 累計頻數(shù)(cf),累計頻數(shù)(F),向上累計以變量數(shù) 列首組的頻數(shù)為始點,逐 個累計各組的頻數(shù),展示 小于該組上限的頻數(shù)和。,向下累計以變量數(shù) 列末組的頻數(shù)為始點,逐 個累計各組的頻數(shù),展示 大于該組下限的頻數(shù)和。,二、圖形描述,1、圓形比例圖:用一個圓代表現(xiàn)象總體,然后按某一類現(xiàn)象所占比例對圓進行分割,以表示其在總體中所占的百分比。 定類,2、條形圖:以長方形的長度表示變量不同取值的頻數(shù)或百分比分布,其長方形的寬度沒有實際意義。 定序,直方圖:由緊挨著的長方形構(gòu)成,其長度和寬度都有意義,寬度表示組據(jù),長度表示頻數(shù)或百分比。 定距,折線圖:用直線連接直方圖中長方形頂端的中點面而成的。 定距,第二節(jié) 分布趨勢測量,一、集中趨勢測量 集中趨勢是從一組數(shù)據(jù)中計算出的一個典型數(shù)值,以反映數(shù)據(jù)的集中程度。 算術平均數(shù) 中位數(shù) 眾數(shù),第四章 集中趨勢的應用,55,下面是一個小故事: 一個人到某公司求職,經(jīng)過調(diào)查,得出關于該公司工資的一些數(shù)據(jù),如果是你,應該如何選擇?,撓頭的數(shù)值,公司員工的月薪如下:,1、算術平均數(shù) 適用于定距及定比層次變量。,2、中位數(shù) 把總體單位某一數(shù)量標志的各個數(shù)值按大小順序排列,位于正中處的變量值,即為中位數(shù),可用于定序、定距、定比資料。,第四章 集中趨勢的應用,59,1. 對未分組資料,(1)、先把所有數(shù)據(jù)按大小順序排列,如果總體單位數(shù)為奇數(shù),則取第(N+1)/2 位上的變量值為中位數(shù); (2)、如果總體單位數(shù)為偶數(shù)。因為居中的數(shù)值不存在,按慣例,取第 N/2位和第(N/2+1 )位上的兩個變量值的平均作為中位數(shù)。,第四章 集中趨勢的應用,60,例 求54,65,78,66,43這些數(shù)字的中位數(shù)。 例、求54,65,78,66,43,38 這些數(shù)字的中位數(shù)。,61,(2)分組資料 按中位數(shù)所在組的下限:,當根據(jù)組距數(shù)列求中位數(shù)時,要采用所謂的比例插值法:先根據(jù)N2在累計頻數(shù)分布中找到中位數(shù)所在組,然后假定該組中各變量值是均勻分布的,再用以下任何一種方法求出中位數(shù)(注意:此處用的是向上累計)。,第四章 集中趨勢的應用,62,例某年級學生身高如下,求中位數(shù),第四章 集中趨勢的應用,63,第一種方法 168 6 17112(厘米),3、眾數(shù) 眾數(shù)是在一組資料中,出現(xiàn)次數(shù)(或頻 數(shù))呈現(xiàn)出“峰”值的那些變量值。 可以用于定類、定序、定距、定比層次變量。,二、離散趨勢測量,2019/7/2,66,1.全距(Range) R =Xmax Xmin 例 求74,84,69,91,87,74,69這些數(shù)字 的全距。 解 把數(shù)字按順序重新排列:69,69,74, 74,84,87,91,顯然有 R =Xmax Xmin 916922,全距(R):最大值和最小值之差。也叫極差。全距越大,表示變動越大。,2019/7/2,67,2、平均差 平均差是離差絕對值的算術平均數(shù)。 A D=,3、 標準差S(standard deviation),定義:各變量值對其算術平均數(shù)的離差平方的算術平均數(shù)的平方根。(均方差) S= =,4、方差,方差(variance, 2, S2 ):各數(shù)據(jù)與平均數(shù)差數(shù)的平方和的平均值稱為方差,也稱為變異數(shù)。,2019/7/2,70,2. 異眾比率 所謂異眾比率,是指非眾數(shù)的頻數(shù)與總體單位數(shù) 的比值,用V R來表示 其中: 為眾數(shù)的頻數(shù); 是總體單位數(shù),異眾比率能表明眾數(shù)所不能代表的那一部分變量值在總體中的比重。,第四章 集中趨勢的應用,71,6. 四分位數(shù)與四分位差,中位數(shù)所有單位被等分為兩部分,因而被稱為二分 位數(shù)。類似于求中位數(shù),我們還可求出四分位數(shù)、十分 位數(shù)、百分位數(shù)。 將總體中的各單位分割成相等的四部分,則這三個 分割的變量值就是四分位數(shù)。若以Q1、Q2、Q3分別代表 第一、第二、第三四分位數(shù)。Q2 即中位數(shù),Q1、Q3的算 法分別是,2019/7/2,72,四分位差(Quartile deviation) 第三四分位數(shù)和第一四分位數(shù)的半距。 避免全距受極端值影響大的缺點。,1、原始數(shù)據(jù) 求下列兩組成績的四分位差: A: 78 80 82 85 89 87 90 86 79 88 84 81 B: 55 68 78 88 99 100 98 90 85 83 84,第三節(jié) 正態(tài)分布與標準值,在正常狀況下,大多數(shù)定距變量的分布都是正態(tài)分布。,1. 正態(tài)分布的數(shù)學形式,正態(tài)分布性質(zhì): (1)正態(tài)曲線以x=呈鐘型對稱 均值=中位數(shù)=眾數(shù) (2)在x=處,概率密度最大;當區(qū)間離 越遠,x落在這個區(qū)間的概率越小。,(3)正態(tài)曲線的外形由值確定。對于固定的 值,不同均值的正態(tài)曲線的外形完全相同,差別 只在于曲線在橫軸方向上整體平移了一個位置 。,(5)E(X)= D(X)= 2,(4)對于固定的 值,改變值, 值越小,正態(tài)曲線越 陡峭;值越大,正 態(tài)曲線越低平。 (總之,正態(tài)分布曲線 的位置是由決定的,而正態(tài) 分布曲線的“高、矮、胖、瘦” 由決定的。),2. 標準正態(tài)分布 Z分數(shù)(標準正態(tài)變量) 用Z分數(shù)表達的標準正態(tài)分布,其概率密度為,一般正態(tài)分布的表示,標準正態(tài)分布的表示,3. 正態(tài)曲線下的面積,但積分畢竟太麻煩了,更何況許多人對積分運算不熟悉,為 此須計算出現(xiàn)成的數(shù)值表供使用者查找。由于正態(tài)曲線的優(yōu)良性 質(zhì),這項工作可以卓有成效地完成:經(jīng)過X的標準分 ,可以將任何正態(tài)分布N(,2)轉(zhuǎn)換成標準正態(tài)分布 N(0,1);運用分布函數(shù)的定義,并利用正態(tài)曲線的對稱性,通 過下式(分布函數(shù))可以計算編制出正態(tài)分布表(見附4)。,采用標準正態(tài)變量表達正態(tài)分布,使標準差得到了進一步闡明。我們看到,標準差是計算總體單位分布及其標志值變異范圍的主要依據(jù),下圖說明了這一點。,(1)變量值在【 -, + 】之間的概率為0.6826。 (2)變量值在【 -2, +2 】之間的概率為0.9546。 (3)變量值在【 -3, +3 】之間的概率為0.9973。,第九章 統(tǒng)計推論,第一節(jié) 抽樣與統(tǒng)計推論 第二節(jié) 參數(shù)估計 第三節(jié) 假設檢驗,第一節(jié) 抽樣與統(tǒng)計推論,一、抽樣的意義與問題 以隨機變量的概率分布理論為基礎,通過分析某一抽樣的樣本信息,來對總體情況作出判斷的統(tǒng)計分析方法,就是統(tǒng)計推論。推論時對或錯的概率是多少。 統(tǒng)計推論包括參數(shù)估計和假設檢驗。,二、抽樣分布,樣本是從總體中抽樣而產(chǎn)生的,如果抽一次,就產(chǎn)生一個樣本,假如不停地抽下去的話,就會產(chǎn)生N個樣本。 抽樣分布式根據(jù)概率的原則而建立的理論性分布,顯示由同一總體中反復不斷抽取不同樣本時,各個可能出現(xiàn)的樣本統(tǒng)計值的分布情況。,二、抽樣分布,在推論統(tǒng)計中,理論和實際的一個重要結(jié)合就是通過抽樣分布和抽樣調(diào)查這兩者的聯(lián)系來實現(xiàn)的。 抽樣分布特指樣本統(tǒng)計量作為隨機變量的概率分布。用數(shù)學語言來說,抽樣分布是運用數(shù)理統(tǒng)計的方法,把具體概率賦予樣本的所有可能結(jié)果的一種理論分布。,二、抽樣分布,比如,從上海財大12000名學生中隨機抽500名,研究其英語的成績,一共抽C50012000次,將會產(chǎn)生如下平均數(shù)。,每一個樣本統(tǒng)計量發(fā)生的概率是不同的,用概率分布來表示抽樣分布;,大家務必分清總體分布、樣本分布、抽樣分布:,三、中心極限定理,推論統(tǒng)計需要有一座能夠架通抽樣調(diào)查和抽樣分布的橋梁。,中心極限定理 我們知道,概率論中用來闡明大量隨機現(xiàn)象平均結(jié)果的穩(wěn)定性的定理,是著名的大數(shù)定理。其具體內(nèi)容是:頻率穩(wěn)定于概率,平均值穩(wěn)定于期望值。但是,大量隨機現(xiàn)象的穩(wěn)定性不僅表現(xiàn)在平均結(jié)果上,同時也表現(xiàn)在分布上,這就是中心極限定理所要闡明的內(nèi)容。 中心極限定理告訴我們:如果從任何一個具有均值和方差2的總體(可以具有任何分布形式)中重復抽取容量為n的隨機樣本,那么當n變得很大時,樣本均值的抽樣分布接近正態(tài),并具有均值和方差 。,(2)由于抽樣分布的標準 差要比總體標準差小, 并且 ,所以如右圖所示,樣本容量越大,抽樣分 布的峰態(tài)愈陡峭,由樣本結(jié)果來推斷總體參數(shù)的可靠性也隨之提高。,無疑,中心極限定理大大拓展了正態(tài)分布的適用面,同時我們得到了以下重要信息: (1)雖然樣本的均值可能和總體均值有差別,但我們可期望這些將聚集在的周圍。因此均值抽樣分布的算術平均數(shù)能和總體的均值很好地重合,這就是為什么總體均值和抽樣分布的均值用同一個來表示的緣故。,第二節(jié) 參數(shù)估計,通俗地說,就是根據(jù)抽樣結(jié)果來合理地、科學地猜一猜總體的參數(shù)大概是什么?或者在什么范圍。 參數(shù)估計分為點估計和區(qū)間估計。 所謂點估計,就是根據(jù)樣本數(shù)據(jù)算出一個單一的估計值,用來估計總體的參數(shù)值。 例如,為了研究上海個人收入,抽樣調(diào)查發(fā)現(xiàn)樣本中個人收入的平均數(shù)是6000元,以此估計上海市個人收入的情況。,所謂區(qū)間估計,就是計算抽樣平均誤差,指出估計的可信程度,進而在點估計的基礎上,確定總體參數(shù)的所在范圍或區(qū)間。我們經(jīng)常預測參數(shù)在點估計值兩側(cè)的給定的區(qū)間內(nèi)。 例如前面例子,估計上海市個人收入的平均數(shù)在5900元和6100元之間。,置信區(qū)間:是我們?yōu)榱嗽黾訁?shù)被估計到的信心而在點估計兩邊設置的估計區(qū)間。 置信度:用置信區(qū)間估計的可靠性(把握度)1-a,一、均值的區(qū)間估計, - , + ,例,從某校隨機地抽取100名男學生,測得平均身高為170厘米,標準差為75厘米,試求該校學生平均身高95和99的置信區(qū)間。,例,從某校隨機地抽取100名男學生,測得平均身高為170厘米,標準差為75厘米,試求該校學生平均身高95和99的置信區(qū)間。,二、百分比的區(qū)間估計,在社會研究中我們碰到許多定類變量,其估計不是均值,而是比率,這便提出了總體成數(shù)的估計問題。 比如某城市是否屬于老年型, 比如電視節(jié)目的收視率,從總體的均值估計過渡到總體的成數(shù)估計,其方法和思路完全相同。 只要用 代替 , 用 代替 可以得出成數(shù)區(qū)間估計的置信區(qū)間: - , + ,根據(jù)中心極限定理,在大樣本情況下, 分布近似正態(tài)分布。因此用 和 代替p和 q。,假若從某社區(qū)抽取一個由200個家庭組成的樣本,發(fā)現(xiàn)其中有36的家庭由丈夫在家庭開支上做決定的次數(shù)超過半數(shù)。試問,家庭開支的半數(shù)以上由丈夫決定的家庭的置信區(qū)間是多少(使用95和99的置信水平)?,例,設根據(jù)某地100戶的隨機調(diào)查,其中60戶擁有電冰箱,求該地擁有冰箱比例的置信區(qū)間。(置信度為95和99),四、決定樣本的大小,在能夠付出的研究代價限度內(nèi),選取最大的樣本; 一項研究能容忍的誤差; 總體的異質(zhì)性情況。,第三節(jié) 假設檢驗,假設檢驗是指先成立一個關于總體情況的假設,繼而抽取一個隨機樣本,然后以樣本的統(tǒng)計量或者統(tǒng)計性質(zhì)來驗證假設。,一、假設檢驗的邏輯,經(jīng)過隨機抽樣獲得一組數(shù)據(jù),即一個來自于總體的隨機樣本。 如果根據(jù)樣本計算的某個或某幾個統(tǒng)計量表明在原假設H0成立的條件下幾乎是不可能發(fā)生,就拒絕或否定這個原假設,并繼而接受它的對立面?zhèn)鋼窦僭OH1。,反之,如果在原假設H0成立的條件下,根據(jù)樣本所計算的某個統(tǒng)計量,發(fā)生的概率可能性不是很小的話,那么就接受原假設。,假設檢驗與小概率原理,小概率原理 大數(shù)定理表明就大量觀察而言,事件的發(fā)生具有一定的規(guī)律性。 根據(jù)概率的大小,人們處理的態(tài)度和方式很不一樣。 在日常生活中,人們往往習慣于把概率很小的事件,當作一次觀察中是不可能發(fā)生的事件。,例如,人們出門做事會遇到不測事故,但沒有人在出門前在意這事。原因是:認為小概率事件在每次出門不會發(fā)生。,“小概率事件”:概率必須很小,那么,究竟要小到什么程度?在社會統(tǒng)計中一般認為在0.05以下為小。,總而言之,小概率原理可以歸納為兩個方面:一是可以認為小概率事件在一次觀察中是不可能出現(xiàn)的;二是如果在一次觀察中出現(xiàn)了小概率事件,那么應該否定原有事件具有小概率的說法或者假設。,例 通過以往大規(guī)模調(diào)查,已知某地一般新生兒的頭圍均數(shù)為34.50cm,標準差為1.99cm。為研究某礦區(qū)新生兒的發(fā)育狀況,現(xiàn)從該地某礦區(qū)隨機抽取新生兒55人,測得其頭圍均數(shù)為33.89cm,問該礦區(qū)新生兒的頭圍總體均數(shù)與一般新生兒頭圍總體均數(shù)是否不同?,假設檢驗的目的就是判斷差別是由哪種原因造成的。, 抽樣誤差造成的; 本質(zhì)差異造成的。,礦區(qū)新生兒頭圍 34.50cm,33.89cn,礦區(qū)新生兒頭圍 34.50cm,一種假設H0,另一種假設H1,抽樣誤差,總體不同,例、妻子從一年中隨機選擇一天跟蹤丈夫,發(fā)現(xiàn)他和別的女人約會。丈夫?qū)ζ拮诱f,這一次非常偶然,是那個女人糾纏自己,除這次外,從來沒有和其他女人約會。請問,丈夫的解釋合理嗎?,二、假設檢驗的基本概念,(一)虛無假設與研究假設 1、選擇誰作為原假設? 在統(tǒng)計檢驗中,通常把被檢驗的那個假設稱為虛無假設,用符號H0表示. 又稱之為零假設、原假設或者解消假設。,原假設往往根據(jù)已有資料或者深思熟慮確定的,是具有穩(wěn)定性的經(jīng)驗看法,沒有充分的根據(jù),是不會被輕易否定的。,比如,根據(jù)以往多年的統(tǒng)計表明,上海財大英語的平均成績?yōu)?0分,隨機抽取100個學生,其平均成績?yōu)?0分,問今年財大學生的英語成績是否下降? 對上述情況,原假設應該為今年財大學生的英語成績?yōu)?0分。,2、選擇誰作為備擇假設 備擇假設用H1 又稱之為研究假設。 原假設是保守、穩(wěn)定的,但是并非不能否定,否則就沒有必要研究了。 備擇假設有三種寫法:,備擇假設有三種寫法: 第一種:H0: =90 H1: 90 第二種:H0: =90 H1: 90 第三中:H0: =90 H1: 90,一個完整的假設應該包括原假設和備擇假設。,3、臨界值、接受域和否定域、顯著性水平 在統(tǒng)計檢驗中,這些不大可能的結(jié)果稱為否定域。如果這類結(jié)果真的發(fā)生了,我們將否定原假設;反之就不否定原假設。 接受域與否定域之間的分界值就是臨界值。,以抽樣分布是正態(tài)分布為例: 找出臨界值、否定域和接受域。,(三)雙尾檢驗和單尾檢驗 根據(jù)否定域位置的不同,可以講假設檢驗分為雙尾檢驗和單尾檢驗。 1、雙尾檢驗 在統(tǒng)計中,必須把否定域分配到抽樣分布的兩端的檢驗,被稱為雙尾檢驗。,在雙尾檢驗中,如果顯著性水平為a,則每側(cè)否定域的概率應該是a/2,臨界值則是Za/2 雙側(cè)檢驗往往寫成這種方式: H0: =90 H1: 90 Z Z a/2 ,否定原假設,反之則接受。,單尾檢驗 所謂單尾檢驗,就是把否定域集中到抽樣分布更合適的一側(cè)。這樣,在顯著性水平相同的條件下,可以得到一個比較大的尾端。 根據(jù)否定域在左側(cè)還是右側(cè),可以將單側(cè)檢驗分為左側(cè)檢驗和右側(cè)檢驗。,(1)右側(cè)檢驗 往往寫成這種方式 第一種:H0: =90 H1: 90 如果Z Za,就拒絕原假設,反之則接受,(2)左側(cè)檢驗 H0: =90 H1: 90 如果Z Za,則拒絕原假設。反之則然。,5、兩類錯誤及其關系 在假設檢驗中,無論是拒絕或者接受原假設,都不可能做到百分之百的正確,都有一定的錯誤。,(1)、第一類錯誤棄真的錯誤 第一類錯誤是,零假設H0實際上是正確的,卻被否定了。 犯第一類錯誤的大小就是顯著性水平。 因此,有人也把第一類措施稱之為 錯誤 (2)、第二類錯誤取偽錯誤 H0實際上是錯誤的,卻被接受了。,可能發(fā)生的兩類錯誤,兩類錯誤是對立的,成反比。如果要減少第一類誤差,將會增加第二類誤差。 完全消除兩種誤差是不可能的,只有靠增大樣本,我們事先選定的可以犯第一類錯誤的概率,叫做檢驗的顯著性水平(用表示),它決定了否定域的大小。 當顯著性水平a 減少時,棄真的錯誤會減少;但納偽的錯誤會增大。,三、假設檢驗的基本步驟,假設檢驗是直接檢驗原假設,間接檢驗備擇假設。 (1)建立假設; (2)選擇適當?shù)慕y(tǒng)計檢驗方法 (3)求抽樣分布; (4)選擇顯著性水平和否定域; (5)計算檢驗統(tǒng)計量; (6)判定。,例,已知初婚年齡服從正態(tài)分布,根據(jù)9個人的抽樣調(diào)查表明,平均初婚年齡為23.5歲,標準差為3歲。 問是否可以認為該地區(qū)平均初婚年齡已超過20歲(0.05)?,(1)建立假設 H0:20(歲) H1:20(歲),(2)總體正態(tài),小樣本的t分布 (3)對自由度8來講,單側(cè)檢驗和顯著性水平005,查表知否定域為t值等于或大于 1.86。,(4)計算統(tǒng)計量 t= 計算得出,(5)判定 否定原假設,即可以認為該地區(qū)的平均初婚年齡已經(jīng)超過20歲。,第三節(jié) 雙變量分析,第一節(jié) 列聯(lián)表和相關測量 第二節(jié) 簡單線性回歸與積距相關,第一節(jié)列聯(lián)表和相關測量,一、相關概述 相關是指一個變量的值與另一個變量的值有連帶性,即一個變量值發(fā)生變化,另一個變量的值也發(fā)生變化。 無相關:0 完全相關:1 正相關 負相關,一. 列聯(lián)表 列聯(lián)表,是按品質(zhì)標志把兩個變量的頻數(shù)分布進 行交互分類,由于表內(nèi)的每一個頻數(shù)都需同時滿足兩個 變量的要求,所以列聯(lián)表又稱條件頻數(shù)表。 例如,某區(qū)調(diào)查了357名選民,考察受教育程度與投 票行為之間的關系,將所得資料作成下表,便是一種關 于頻數(shù)的列聯(lián)表。,22頻數(shù)分布列聯(lián)表的一般形式,習慣上把因變量Y放在表側(cè),把自變量X放在表頭。 22列聯(lián)表是最簡單的交互分類表。 rc列聯(lián)表 r(row)、c(column),rc頻數(shù)分布列聯(lián)表的一般形式,兩個邊際分布:,在相對頻數(shù)分布列聯(lián)表中,各數(shù)據(jù)為各分類 出現(xiàn)的相對頻數(shù)(或者頻率)。將頻數(shù) 化成相對 頻數(shù) 有兩種做法: 相對頻數(shù)聯(lián)合分布 兩個邊際分布 或 相對頻數(shù)條件分布 或,rc相對頻數(shù)聯(lián)合分布列聯(lián)表,例A1試把下表所示的頻數(shù)分布列聯(lián)表,轉(zhuǎn) 化為自變量受到控制的相對頻數(shù)條件分布列聯(lián) 表,并加以相關分析。,從上表可知,受過大學以上教育的被調(diào)查者絕大多 數(shù)(占95.8%)是投票的,受教育程度在大學以下的被調(diào) 查者雖多數(shù)也參與投票(占67.9%),但后者參與投票的百 分比遠小于前者;前者只有4.2%棄權(quán),而后者則有32.1% 棄權(quán)。兩相比較可知,受教育程度不同,參與投票的行 為不同,因此兩個變量是相關的。,二、用卡方進行顯著性檢驗,根據(jù)樣本中兩個變量的關系推論總體兩個變量的關系,如果這兩個變量是定類或者一個定類(另一個是定序)時,就可以用卡發(fā)檢驗來推論總體。,例:在某種流行病流行的時候,共有120個病人進行了治療,其中40個病人按標準劑量服用某種新藥,另有40個病人按標準劑量的2倍服用了這種新藥,其余40個病人只按病狀治療(而不是按病因治療),治療結(jié)果按迅速痊愈、緩慢痊愈、未痊愈分為三類,最后交叉分類的情況列于表135中,試問這三種療法之間有沒有差別(取005)。,三、相關系數(shù),1、PRE性質(zhì) PRE(proportionate reduction in error)是指消減誤差比例。 社會研究的目的就是要預測或解釋社會現(xiàn)象的變化。 比如,有一種社會現(xiàn)象Y(例如大學生的最大志愿),在預測或解釋這種現(xiàn)象時,難免會有誤差。假定另一社會現(xiàn)象X(比如性別)是與Y有關系。,如果我們根據(jù)X的值來預測Y的值(比如根據(jù)性別來預測大學生的最大志愿),理應減少若干誤差。而且X和Y的關系愈強,所能減少的預測誤差就會越多。 換而言之,所消減的誤差有多少,可以反映X與Y的相關強弱程度。,現(xiàn)在假定不知道X的值,我們在預測Y 的值時所產(chǎn)生的全部誤差是E1,如果知道X的值,我們可以根據(jù)X的值來預測Y的值,假定誤差是E2,則用X的值來預測Y時,所減少的誤差就(E1 E2) 則所減少誤差比例 PRE (E1 E2)/ E1,PRE數(shù)值范圍在1和0之間。 討論:通過PRE的值如何反映變量之間的關系? PRE數(shù)值的意義就是用一個現(xiàn)象來解釋另外一個現(xiàn)象時能夠減少百分之幾的錯誤。,2、Phi相關系數(shù),3、克拉默V相關系數(shù),4、Lambda相關系數(shù),式中: m 為X的每一分類中Y分布的眾數(shù)的頻數(shù); My 為Y邊際分布中的眾數(shù)的頻數(shù); n為樣本單位數(shù)。,課堂練習: 為了研究飲食習慣與地區(qū)之間的關系,做了100人的抽樣調(diào)查。問其關系度如何?,第二節(jié) 簡單線性回歸與積距相關,一、散點圖與回歸線,散點圖表示的相關的類型,正相關 負相關 完全正相關 完全負相關 稱零相關,二、簡單線性回歸方程 線性回歸分析,一般是先依據(jù)相關表做出 散點圖,直觀地估計X和Y關聯(lián)性。如果兩變量 的確呈現(xiàn)出一定的線性相關趨勢,便可以設所 要求的回歸直線方程為 是因變量Y的預測值或稱估計值。 回歸方程的建立: 先做散點圖;利 用最小二乘法。,運用最小平方法可以在所有可能的直線中找到使 Q達到最小的回歸直線。 分別對a、b求偏導并令其為零,求得兩個標準方程:,解聯(lián)立方程,得到 a 和 b 的計算公式:,X,Y,在回歸方程中,b有十分重要的意 義,被稱為回歸系數(shù)。b值的大小, 反映了X對Y有多大的影響,即b值就 是當X增加一個單位時Y值的增量。,例:為了研究受教育年限和職業(yè)聲望之間的關系,設 以下是8名社會成員抽樣調(diào)查的結(jié)果,求直線回歸方程。 解:,直線回歸方程是,X,Y,總變差 = 回歸變差 + 剩余變差,三、 決定系數(shù)(r2),三種變差平方和,總變差 SST,回歸變差 SSB,剩余變差 SSW,是r2而非r 具有PRE意義,決定系數(shù)也可以表達為回歸變差在總變差中所占比例,四、積矩相關系數(shù),積鉅相關系數(shù)又稱之為皮爾遜相關系數(shù)。 r中的X 和Y位置互換,系數(shù)大小不變; 【-1,1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論