




已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀
Curvature analysis of roller-follower cam mechanisms(楊杰+余啟良).pdf.pdf 免費下載
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
MATHEMATICAL COMPUTER PERGAMON Mathematical and Computer Modelling 29 (1999) 69-87 MODELLING Curvature Analysis of Roller-Follower Cam Mechanisms HONG-SEN YAN Department of Mechanical Engineering, National Cheng Kung University Tainan 70101, Taiwan, R.O.C. WEN-TENG CHENG Department of Mechanical Engineering, I-Shou University Ta-Shu, Kaohsiung Hsien 840, Taiwan, R.O.C. (Received January 1996; accepted January 1998) Abstract-The equations related to the curvature analysis of the roller-follower cam mechanisms are presented for roller surfaces being revolution surface, hyperboloidal surface, and globoidal surface. These equations give the expressions of the meshing function, the limit function of the first kind, and the limit function of the second kind. Once these functions are known, the principal curvatures of the cam surface, the relative normal curvatures of contacting surfaces, and the condition of undercutting can be derived. Three particular cam mechanisms with hyperboloidal roller are illustrated and the numerical comparison between 2-D and 3-D cam is given. 1999 Elsevier Science Ltd. All rights reserved. Keywords-” F ; 8”, , I 1 (3) 0 0 01 T23 = 0 cp -sp 0 (4 where we designate sine and cosine of the corresponding angle as symbols C and S, and the subscript ij in the designation Tij is the transformation matrix from coordinate systems Sj to s+ Transformation matrix Trs can be obtained by the successive matrix multiplication P13l = Pii GoI To21 P231. (5) Transformation matrix Trs is expressed in partition matrix as follows: P131 P13l fT131 = O 1 l where Rrs is a rotation matrix and drs is a translation column vector. Taking the derivatives of transformation matrix Tls, relative velocity matrix Wrs, and rela- tive angular velocity matrix firs are given by w131 = T131T i;3 = ;l3 $1 , (7) p131 = R131T , $1 , 1 (11) where wT31 = 1 Pl31 71311. (12) Expanding equation (1 l), we have where w, wy, and w, are the components of the relative angular velocity between the roller and the cam, and TV, rr, and rz are the components of the relative translational velocity between the roller and the cam at the origin of coordinate system S3. All the components of the relative velocities are expressed in coordinate system S3. For the roller-follower cam mechanism, the meshing function Cp is defined as qe,u,q E n(3) .vl) = nf W, q . (14) For the cam surface being conjugate to the roller surface at the point of contact, the equation of meshing is given by (e, 21, t = 0. (15) Simultaneous solution of equations (9) and (15) determines the contact line on the roller sur- face for any given time t, and simultaneous solution of equations (10) and (15) determines the corresponding contact line on the roller surface in the meantime. The limit function of the second kind at for mutually contacting surfaces Cr and C3 is expressed as (a,(e,u,t) = np T w; ?-a) * (16) Let KY and $) be the principal curvatures of the roller surface C3, and in and bn be the corresponding principal directions in coordinate system S3. Then, the limit function of the first kind E is defined as 7,12 Q=Jvnz+Iry+, E = K$nz + wn Y, (17) C=$)VnY-IIZ, where wnz, WQ, ynxr and vnV are the components of the relative angular and sliding velocities in the tangent plane of mutually contact surfaces C3 and Cr as follows: wnIs = wp T in 1 9 my = w3 1 (31) T bn, (18) v = g. Using equations (A2) and (A4), the components of the relative velocity matrix Wis becomes w, = WY = 0, W% = (4; - l)Wl, rz = -aSf - 1) Se) wi, vu = (-aC - 1) + c (46 - 1) CO) WI, u* = 0. From equation (41), the meshing function is given by = (-aS(0+2)+b(fC (e+42)+b+;se)f. From equations (48) to (50), the coefficients 5 and C, and the limit function of the first kind are given by =(ac(e+2)-b(:-1)Ce), c = 0, E = -a2 - b2 (4: - 1)2 + 2ab (4; - 1) CfSO) u tan y (Sa + tan ycace) +c2as2e(u set y tan r)2 - u tan y (s;sase + siC8) (u /Tsec y). Example 3. Concave Globoidal Cam with an Oscillating Hyperboloidal Follower The settings of the coordinate systems for the concave globoidal cam with a hyperboloidal follower is shown in Figure 7. The globoidal cam rotates about the input axis with rotation angle 41, while the follower oscillates about the output axis with rotation angle $2. Thus, let sr = 0 and 52 = 0. The shortest d is t ante between the input and output axes is a and the twisted 82 H.-S.YAN AND W.-T. CHENG Figure 7. Concave globoidal cam with an oscillating hyperboloidal follower. angle a is r/Z. For the relative location of the rotation axis of the roller and the output axis, the distance b = 0 and the twisted angle S = 7r/2. The roller has a distance d from the origin of the coordinate system Ss to its base circle. And, the relation between the input and the output displacements is given by 42 = ) , B = w1 (cdq5 - 21 (tan 7 (a + dS42) - c sec2 7959 - U2 tan 7 sec2 7S42) , c = 0. From equation (42), the equation of meshing is given by ysC2 + (234; + y32) (d + 215X” 7) = 0. Furthermore, the limit function of the second kind is given by !Bt = II II Nt3) -1(AtsinB+Btcosf3+Ct), a3 where Curvature Analysis At = W: (cdC) , Bt = wf (cd l(N(3)11-1 ( (z3$i + y3c42&) (d + ?JSeC2 7) . nom equations (48) to (SO), the coefficients c and C, and the limit function of the first kind are given by 542) - ya(d + 4h + 5542) . 150 2 (deg) I I r .L_ MS i _ 1 Dwell j 1 I I Dwell 120 Figure 8. Motion function. Example 4. Numerical Comparison Between 2-D and 3-D Cams The cam mechanisms of Example 1 and Example 3 are applied to offer the quantifiable com- parison between the 2-D and 3-D cams. They use the same roller radius, follower displacement, motion function, and distance between the input and output axes. The motion function cPs(&) shown in Figure 8 is divided into five intervals and that the second and the fourth intervals use modified sine motion. Table 1 shows the parameters and the functions which are used for the disk cam and the globoidal cam. Table 1. Parameters of disk cam and globoidal cam. a4 H.-S. YAN AND W.-T. CHENG Figure 9. Cam profile for disk cam. 50 0 Figure 10. Cam profile for globoidal cam. I I f I I I, I I I I I I I I I I 0 h (de Figure 11. Pressure angle for disk cam. Curvature Analysis 85 For the roller surface being a cylindrical surface, the pressure angles q&k and qs10 for the disk cam and the globoidal cam are derived as Cvdisk = IbSfJ WV (b2 + c2 + 2bcC6)“2 cqdO = (c2ce2 + u2)1/2. Figures 9-14 shows the cam profiles, the pressure angles, and the principal curvatures for the disk cam and the globoidal cam. As shown in Figure 10, the pressure angles for the Profiles 1 and 2 of the globoidal cam have the same value for the same 41 and u. CONCLUSION The rollers with cylindrical surface, conical surface, and globoidal surface are usually used in roller-follower cam mechanisms. The cylindrical surface and the conical surface are special cases of the hyperboloidal surface. For the rollers of revolution surface, hyperboloidal surface, and globoidal surface, the curvature analysis of the roller-follower cam mechanisms are presented in this paper. For the mutually contacting surfaces between the cam and the follower, the principal curvatures of the cam surface, the relative normal curvature, and the condition of undercutting are expressed in terms of the meshing function and the limit functions. And, these functions for the cam mechanisms with the three-roller surfaces are derived. The hyperboloidal surface and the globoidal surface are the particular cases of the axis-symmetric quadric surface while the later one is a particular case of the revolution surface. For the simplicity of programming, we just focus on the roller of revolution surface. Here, all the surface normals of the roller surfaces are directed outward the roller. Therefore, the limit function of the first kind must be minus in order to avoid the undercutting. APPENDIX The transformation matrix Trs is given by a1 CdJz + CaS41S42 a3(44lS42 + CaS41C4J2) - Sj3SaS1 Z3 = I -+%c42 + CaCd1S42 Pwiw42 + CffC41C2) - spsaclpl SffSdJ2 SPCa + C&9aC42 0 0 (AlI -SP(-ChS4Q + CaS&C95,) - cpsasq+l a% - szSc&h + b(C$IC& + Ca&s#) -ww1w2 + CaC41wJ2) - CphYCc#q -a%h - szSaC& + b(-ShW2 + c0rc4s4) -SPSaC& + CPCa -61 + s2Ca + bSaS& 1 I. 0 The relative velocity matrix Wrs is given by w131 = 0 -wz wy rz WZ 0 -% rrl -wy WI 0 72 0 0 0 0 with the components w, = -&s&pz, I I (4 wy = -&(SPCa + CPSaC42) + &sp, w, = -&(CPCa - Spsacqh) + 42cp, (A3) 86 H.-S. YAN AND W.-T. CHENG t I- u=S8 360 Figure 12. Pressure angle for globoidal cam. _._- 0 Figure 13. First principal curvature for disk cam. 360 0.04 , , , , ua58 / Figure 14. Principal curvatures for globoidal cam. Curvature Analysis 87 Tz = -&(aCoS+z + s2SaC&) - BlSdq2, Ty = $1 (-Ccc/3 (b + aCq52) + sosp (a + bC42) + s2SaC/w2) + cj2bCP - 81 (Cc&P + SaC/3C42) + B2SP, T= = $1 (CcxS (b + aC&) + SaCP (u + bCq&) - s2SaSPS42) - rj2bSP - B1 (Cc&p - S&3/%39) + B&p. The derivative of relative velocity matrix Wls is given by 0 -Ljz Lj, iz 1 w13 = WZ 0 -Ljz iv 1. I -&Jar iJz 0 i, 0 0 0 0 (A3)(cont.) (A4) with the components . . . . l& = -4142SaC42 - lSwJ2, Ljy = &2cpsasq52 - $1 (SPCa + C/wap2) + J,sp, Lj* = 4142spsas42 + $1 (-cpccu + S/mYCq52) + $2cp, i, = -sac42 &s2 + &Sl + &(-aCaCq52 + s2SaS42) ( - $1 (aCaSq52 + s2SaC42) - IlScYS42, iv = CSaS42 (qi 1S2 + 42Bl + &$2 (aCCcxS, - bSaS/W+2 + sCSCYC) (A5) + $1 a (SaSP - CPYC) + b (-CaCp + Sk164) + s2CPSaSqi2 + &bC/3 - 51 (CCYSP + SCYCPG#J) + i2Sp, iz = -S/3SaSqs2 (” 182 + $2.41 + $142 (-aSpCcuS& - bSaCPS& - s2S&SaC&) + $1 a (SaCP + SPCaC&) + b (CdV3 + CPSaC42) - sSM+ - &bS/3 + lil (-C&j3 + SCYS/C) + s2Cp. REFERENCES 1. M.L. Baxter, Curvature-acceleration relations for plane cams, ASME Z?unsactions, 483-469, (1948). 2. M. Kloomok and R.V. Muffley, Determination of radius of curvature for radial and swinging-follower cam systems, ASME Transactions, 795-802, (1956). 3. F.H. Raven, Analytical design of disk cams and three-dimensional cams by independent position equations, ASME IPransactions, Journal of Applied Mechanics, 18-24, (1959). 4. S. Yonggang, Curvature radius of disk cam pitch curve and profile, In Proceedings of the ph World Congress on Theory of Machines and Mechanisms, pp. 1665-1668, (1987). 5. F.L. Litvin, Theo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司組織雙節(jié)活動方案
- 公司組織部活動方案
- 公司日常體育活動方案
- 公司節(jié)約成本活動方案
- 公司網(wǎng)上銷售活動方案
- 公司文旅活動方案
- 公司收入策劃方案
- 公司組織外省旅游活動方案
- 2025年系統(tǒng)工程基本原理及其應(yīng)用考試試題及答案
- 2025年網(wǎng)絡(luò)直播運營管理師職業(yè)資格考試試題及答案
- 多模態(tài)成像技術(shù)在醫(yī)學中的應(yīng)用-全面剖析
- 郭秀艷-實驗心理學-練習題及答案
- 員工測試題目及答案
- 《用電飯煲蒸米飯》(教案)-2024-2025學年四年級上冊勞動魯科版
- 七年級英語下冊 Unit 1 Can you play the guitar教學設(shè)計 (新版)人教新目標版
- 腎臟內(nèi)科護理疑難病例討論
- 物業(yè)電梯管理制度及規(guī)范
- 果蔬類營養(yǎng)知識培訓課件
- 2025年深圳市勞動合同保密協(xié)議官方模板
- 信息化建設(shè)項目質(zhì)量控制措施
- 常見臨床檢驗項目臨床意義
評論
0/150
提交評論