挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì)外文翻譯、中英文翻譯、外文文獻(xiàn)翻譯_第1頁(yè)
挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì)外文翻譯、中英文翻譯、外文文獻(xiàn)翻譯_第2頁(yè)
挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì)外文翻譯、中英文翻譯、外文文獻(xiàn)翻譯_第3頁(yè)
挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì)外文翻譯、中英文翻譯、外文文獻(xiàn)翻譯_第4頁(yè)
挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì)外文翻譯、中英文翻譯、外文文獻(xiàn)翻譯_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 外文原文: Modeling and parameter estimation for hydraulic system of excavators arm HE Qing-hua, HAO Peng, ZHANG Da-qing Abstract A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution (LUDV) system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it ,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference pressure were tested and analyzed. The results show that the difference of pressure does not change with load and it approximates to 2.0MPa. And then, assume the flow across the valve id directly proportional to spool displacement and is not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic- cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve, the flow gain coefficient of valve unidentified as 2.82510-4m3/(sA) and the mode is verified. Key words: Excavator, Hydraulic-cylinder proportional system, Load independent flow distribution (LUDV) system, Modeling, Parameter estimation 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 1 Introduction For its high efficiency and multifunction, hydraulic excavator is widely used in mines,road building, civil and military construction, and hazardous waste cleanup areas The hydraulic excavator also plays an important role in construction machines Nowadays, macaronis and mobilization have been the latest trend for the construction machines So, the automatic excavator gradually becomes popular in many countries and is considered a focus Many control methods can be used to automatically control the manipulator of excavator Whichever method is used, the researchers must know the structure of manipulator and the dynamic and static characteristics of hydraulic system That is, the exact mathematical models are helpful to design controller However, it is difficult to model on time-variable parameters in mechanical structures and various nonlinearities in hydraulic actuators, and disturbance from outside Researches on time delay control for excavator were carried out in Refs NGUYE used fuzzy sliding mode control and impedance control to automate the motion of excavators manipulator SHAHRAM et al adopted impedance control to the teleported excavator Nonlinear models of hydraulic system were developed by some researchers. However, it is complicated and expensive to design controller, which 1imits its application In this paper, based on the proposed model, the model of boom hydraulic system of excavator was simplified according to engineering and by considering the force equilibrium, continuous equation of hydraulic cylinder and flow equation of electro-hydraulic proportional valve; at the same time, the estimation methods and equations for the parameters of model were developed 2 Overview of robotic excavator The backhoe hydraulic excavator studied is shown in Fig.1 In Fig.1, Fc presents the resultant force of hydraulic cylinder, gravity of boom, dipper, bucket and so on at point B,whose direction is along cylinder AB; Fc can be decomposed into Fcl and Fc2, and their directions are vertical and parallel to that of O1B, respectively; ac is the acceleration whose 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 direction is same to that of Fc, and ac can be decomposed into acl an d ac2 too; G1, G2 and G3 are the gravity centers of boom, dipper and bucket, respectively; ml, m2 and m3 are the masses of them, and their values can be given by experiment( m1=868.136kg, m2=357.115kg and m3=210.736kg); Ol, O2 and O3 are the hinged points; G1, G2and G3are projections of Gl, G2 and G3 on x axis, respectively The arm of excavator was considered a manipulator with three degrees of freedom (three inclinometers were set on the boom, dipper and bucket, respectively) In tracking control experiment, the objective trajectories were planed based on the kinematic equation of excavators manipulator Then, the motion of boom, dipper an d bucket was set by the controller In order to suit for automatic contro1 the normal hydraulic control excavator should be retrofitted to electro-hydraulic controller Based on original hydraulic system of SW E-85 The hydraulic pilot control system was replaced by an electro-hydraulic pilot control system The retrofitted hydraulic system is shown in Fig.2 In this work, because boom, dipper an d bucket are of the same characteristics , the hydraulic system of boom was taken as an example In the electro-hydraulic pilot control system, the pilot electro hydraulic proportional valves were derived from adding proportional relief valves on the original SX-l4 main valve, and hydraulic pilot handle was substituted by electrical one The retrofitted system of excavator was still the LUDV system (Fig.3)of Rexroth with good controllability In Fig.3, y is the displacement of piston; Q1 and Q2 are the flows in and out to the cylinder respectively; pl,p2, ps and pr are the pressures of head and rod sides of cylinder, system and return oil,respectively; A1 and A2 are the areas of piston in the head and rod sides of cylinder, respectively; xv is the displacement of spool; m is the equivalent mass of load. Flg.1 Schematic diagtam of excavators arm 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 Flg.2 Schematic diagram of retrofitted electro-hydraulic system of excavator Flg.3 Schematic diagram of LUDV hydraulic system after retrofitting 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 3 Model of electro-hydraulic proportional system 3.1 Dynamics of electro hydraulic proportional valve In this work, the electro-hydraulic proportional valve consists of proportional relief valves and SX-14 main valve A transfer function from input current to the displacement of spool can be obtained as follows: Xv(s) Iv(s)=KI (1+bs) (1) where Xv is the Laplace transform of xv, m; KI is the current gain of electro-hydraulic proportional valves, m A; b is the time constant of the first order system, s: Iv=I(t)-Id,I(t)and Id are respectively the control current of proportional valve and the current to overcome dead band, A 3.2 Flow equation of electro-hydraulic proportional valve In this work , LUDV system was adopted in the experimental robotic excavator According to the theory of LUDV system, the flow equation can be gotten: 11 2 pwxcQ vd 222 pwxcQvd = where p is the spring-setting pressure of load sense valve, MPa; cd is the flow coefficient m5 (Ns); w is the area gradient of orifice, m2 m; is the oil density, kg m3; 1p and 2p are the two orifices pressure, respectively, M Pa When the flow of excavator is not saturated, p is a nearly constant In this work, the value was tested and gotten by experiment In Fig.4, ps, p1s,and p represent the system pressure, the load sense valve pressure and the diference of pressure, respectively. The pressure experiment curves of the system show the variation of three kinds of pressures Although Ps and pls change with load, their difference does not change with load, the value approximates to 2.0MPa.So, the effect of on the flow across the valve can be neglected It is assumed that the flow across the valve is proportional to the size of orifice valve, and the flow is not influenced by 0)(/2 1 tIppwxc rvd , (2) 0)(2 tIpwxc vd , 0)(/2 2 tIppwxc rvd , 0)(2 tIpwxc vd , (3) 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 load Then, Eqn (2) can be simplified as Q1=Kqxv(t),I(t)0 (4) where is the flow gain coefficient of valve, m2 s, and /2 pwcKdq Flg.4 Curves of pressure experiment under boom moving condition 3.3 Continuity equation of hydraulic cylinder Generally speaking, construction machine does not permit external leakage At present, the external leakage can be controlled by sealing technology On the other hand,it has been proven that the internal leakage of excavator is quite little by experiments So, the influence of internal and external leakage of hydraulic system can be ignored When the oil flows into head side of cylinder and discharges from rod side, the continuity equation can be written as cpVyAQ /1111 cpVyAQ /2222 where V1 and V2 are the volumes of fluid flowing into and out the hydraulic cylinder, m3 ;c is the effective bulk modulus(including liquid, air in oil and so on), N/m2 3.4 Force equilibrium equation of hydraulic cylinder It is assumed that the mass of oil in hydraulic cylinder is negligible,and the load is rigid. Then the force equilibrium equation of hydraulic cylinder can be calculated from the Newtons second law: (5) 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 cc FyBymApAp 2211 (6) where Bc is the viscous damping coefficient, Ns m 3.5 Simplified model of electro hydraulic proportional system After the Laplace transform of Eqns (4) (6), the simplified model can be expressed as 21201 asasasssFbsXbsY cfv (7) where Y(s) is the Laplace transform of y; 122211 / AAVAKb qc ;b1=V1V2;a0=V1V2m;a1=BcV1V2; 2212122 AVAVa c . 4 Parameters estimation From the process of modeling and Eqn (7), it is clear that all parameters in the simplified model are related to the structure。 the motional situation and the posture of excavators arm Moreover, these parameters are time variable. So it is quite difficult to get accurate values and mathematic equations of these parameters. To solve this problem, those important parameters of model were estimated approximately by the estimation equation and method proposed in this work 4.1 Equivalent mass estimation for load on hydraulic cylinder The load of boom hydraulic cylinder(it is assumed there is no external load)consists of boom, dipper and bucket In Fig.1, boom, dipper and bucket rotate around points O1,O2 and O3, respectively So their motions are not straight line motions about the cylinders, that is to say, their motion directions are different from Y in Eqn.(5) So, m in Eqn.(6)cannot be simply regarded as the sum mass of boom, dipper and bucket Considering O1 at an axis of manipulator, the torque and angular acceleration can begiven as follows: s in111 BOcBOc lFlFM BOcBOc lala 11 s in1 where M and are the torque and angular acceleration of manipulator to O1,respectively;BQl1 is the length from point O1 to point B According to the rotating law: M=J ,we get (8) 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 BOcBOc lJalF 11 /s ins in that is BOcc lJaF 12/ ( 9) where J is the equivalent moment inertia of manipulator to point O1,kgm2, and it can be written as follows: 312111 233222211 GOGOGO lmJlmJlmJJ (10) J1, J2 and J3 are the moment inertia of boom, dipper and bucket to their own bary center respectively The values of them can be obtained by dynamic simulation based on the dynamic mode, J1=450.9Nm, J2=240.2Nm, J3=94.9Nm. Comparing Eqn (9)with Fc=mac, the equivalent mass at point B can be given: BOlJm 12/ (11) 4.2 Estimation for load on hydraulic cylinder The equivalent moment equation of manipulator to O1 is 3121111 321s i n GOGOGOBOc glmglmglmlF (12) where 2111 , GOGO lland 31GOl are the length from pointO1 to point G1 , G2and G3;,respectively Then, the counter force of load is s in1312111 321 BOGOGOGOc lglmglmglmF (13) 4.3 Estimation for flow gain coefficient of valve The flow of pump can be measured by flow transducer The instrument used in this work was Multi system 5050 The step response of flow of boom cylinder under the electro hydraulic proportional valve controlled by the step curent is shown in Fig.5 At the same time, the curve verifies Eqn 11 Based on the experiment curve, the range of KqKl can be identified according to Eqns.(1)and(4) And then, according to data in Fig.4, we can get: KqKl=2.82510-4m3/(sA) 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 Flg.4 Flow of boom cylinder under electro-hydeaulic proportional value controlled by step current 5 Conclusions ( 1) The mathematic model of electro hydraulic system is developed according to the characteristics of excavator It is assumed that the flow across the valve is directly proportional to the size of valve orifice, and the influence of intemal and extemal leakage of hydraulic system is ignored The simplified model can be obtained: )(/)()()( 212011 asasasssFbsXbsY cv where represent the displacement of piston and the displacement of spool ( 2) From the model of electro hydraulic system, we can obtain the equivalent mass BOlJm 12/ , bearing force )(31211 3121 GOGOGOl lmglmglmF , flow gain coefficient of value KqKl=2.82510-4m3/(sA) , where KI is the current gain of electro hydraulic proportional valves From: Journal of Central South University (English) 2008 Vol 15 No. 3 pages 382-386 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 譯文: 挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì) 何清華,赫鵬,張大慶 摘 要 首先介紹了液壓挖掘機(jī)的一個(gè)改裝的電動(dòng)液壓的比例系統(tǒng)。根據(jù)負(fù)載獨(dú)立流量分配( LUDV )系統(tǒng)的原則和特點(diǎn),以動(dòng)臂液壓系統(tǒng)為例并忽略液壓缸中的油大量泄漏,建立一個(gè) 力平衡方程和一個(gè)液壓缸的連續(xù)性方程。基于電動(dòng)液壓的比例閥門(mén)的流體運(yùn)動(dòng)方程,測(cè)試的分析穿過(guò)閥門(mén)的壓力的不同。結(jié)果顯示壓力的差異并不會(huì)改變負(fù)載,此時(shí)負(fù)載接近 2.0MPa。然后假設(shè)穿過(guò)閥門(mén)的液壓油與閥芯的位移成正比并且不受負(fù)載影響,提出了一個(gè)電液控制系統(tǒng)的簡(jiǎn)化模型。同時(shí)通過(guò)分析結(jié)構(gòu)和承重的動(dòng)臂裝置,并將機(jī)械臂的力矩等效方程與旋轉(zhuǎn)法、參數(shù)估計(jì)估計(jì)法結(jié)合起來(lái)建立了液壓缸以等質(zhì)量等為參數(shù)的受力平衡參數(shù)方程。最后用階躍電流控制電液比例閥來(lái)測(cè)試動(dòng)臂液壓缸中液壓油的階躍響應(yīng)。根據(jù)實(shí)驗(yàn)曲線(xiàn),閥門(mén)的流量增益系數(shù)被確定為2.82510-4m3/(sA),并驗(yàn)證了該模型。 關(guān)鍵詞 : 挖掘機(jī),電液比例系統(tǒng),負(fù)載獨(dú)立流量分配( LUDV )系統(tǒng),建模,參數(shù)估計(jì) 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 1 引言 由于液壓挖掘機(jī)具有高效率、多功能的優(yōu)點(diǎn),所以被廣泛應(yīng)用于礦山,道路建設(shè),民事和軍事建設(shè),危險(xiǎn)廢物清理領(lǐng)域。液壓挖掘機(jī)在施工機(jī)械領(lǐng)域中也發(fā)揮了重要作用。目前,機(jī)電一體化和自動(dòng)化已成為施工機(jī)械發(fā)展的最新趨勢(shì)。因此,自動(dòng)挖掘機(jī)在許多國(guó)家逐漸變得普遍并被認(rèn)為重點(diǎn)。挖掘機(jī)可以用許多控制方法自動(dòng)地控制操作器。 每種使用方法,研究員必須知道操作器結(jié)構(gòu)和液壓機(jī)構(gòu)的動(dòng) 態(tài)和靜態(tài)特征。即確切的數(shù)學(xué)模型有利于控制器的設(shè)計(jì)。然而,來(lái)自外部的干擾使得機(jī)械結(jié)構(gòu)模型和各種非線(xiàn)性液壓制動(dòng)器的時(shí)變參數(shù)很難確定。關(guān)于挖掘機(jī)時(shí)滯控制的研究已經(jīng)有人在研究了。 NGUYEN 利用模糊的滑動(dòng)方式和阻抗來(lái)控制挖掘機(jī)動(dòng)臂的運(yùn)動(dòng), SHAHRAM 等采取了阻抗對(duì)挖掘機(jī)遠(yuǎn)距傳物的控制。液壓機(jī)構(gòu)非線(xiàn)性模型已經(jīng)由研究員開(kāi)發(fā)出來(lái)了。 然而,復(fù)雜和昂貴的設(shè)計(jì)控制器限制了它的應(yīng)用。在本文,根據(jù)提出的模型,根據(jù)工程學(xué)和受力平衡,挖掘機(jī)臂液壓機(jī)構(gòu)模型簡(jiǎn)化為連續(xù)均衡的液壓缸和流動(dòng)均衡的電液比例閥;同時(shí),確定了模型的參量的估計(jì)方法 和等式。 2 挖掘機(jī)機(jī)械臂概述 液壓挖掘機(jī)的挖掘研究結(jié)果如圖 1。在圖中, Fc 表示液壓缸,動(dòng)臂的重力,斗桿,鏟斗的重力等在 B 點(diǎn)合力,其方向是沿著液壓缸 AB 方向 ; Fc 可分解成 Fc1 和 Fc2 ,他們的方向分別為垂直于和平行于 O1B ,加速度 ac 的方向與 Fc 是相同的,并且 ac 也可以分解成 ac1 和 ac2; G1 , G2 和 G3 分別是動(dòng)臂,斗桿和鏟斗的重心 ; m1, m2, m3是 它 們 各 自 的 質(zhì) 量 且 能 通 過(guò) 實(shí) 驗(yàn) 給 定 ( m1=868.136kg , m2=357.115kg and m3=210.736kg) ; Ol, O2 和 O3 是鉸接點(diǎn) ; G1, G2和 G3分別是 G1 , G2 和 G3 在 X軸上的投影。 挖掘機(jī)的臂被認(rèn)為是一個(gè)三個(gè)自由度的的機(jī)械手(三個(gè) 測(cè)斜儀 分別裝在動(dòng)臂,斗桿和鏟斗上)。在跟蹤控制實(shí)驗(yàn)中,其目標(biāo)軌跡是根據(jù)挖掘機(jī)機(jī)械手運(yùn)動(dòng)學(xué)方程確定的。然后,動(dòng)臂,斗桿和 鏟斗的動(dòng)作有操作員控制。為了適應(yīng)自動(dòng)控制,普通液壓控制挖掘機(jī)應(yīng)改造電動(dòng)液壓控制挖掘機(jī)。 基于 SW E-85 型原有的液壓系統(tǒng),把先導(dǎo)液壓控制系統(tǒng)更換為先導(dǎo)電液控制系統(tǒng)。重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 新改進(jìn)的液壓系統(tǒng)如圖 2 所示。在這系統(tǒng)中,因?yàn)閯?dòng)臂,斗桿和鏟斗具有相同的特點(diǎn),將動(dòng)臂的液壓系統(tǒng)作為一個(gè)例子。在先導(dǎo)電液控制系統(tǒng)中,先導(dǎo)電液比例閥是在原始的 SX-l4 主要閥門(mén)基礎(chǔ)上增加比例泄壓閥衍生出的并且用電子手柄替代液壓手柄。 挖掘機(jī)的改裝系統(tǒng)仍是具有良好的可控性的 LUDV 系統(tǒng)(圖 3 )。在圖 3 中 , y是可移動(dòng)的活塞的位移; Q1 和 Q2 分別 代表流進(jìn)和流出液壓缸的流量; pl, p2, ps 和pr 分別表示汽缸的有桿腔和無(wú)桿腔,系統(tǒng)和回油路的壓力; A1 和 A2 分別表示汽缸的有桿腔和無(wú)桿腔的面積; xv 代表閥芯的位移; m代表加載的負(fù)載; 圖 1 挖掘機(jī)工作裝示意圖 圖 2 挖掘機(jī)液壓系統(tǒng)示意圖 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 圖 3 改造后 LUDV 液壓系統(tǒng)示意圖 3 模型的電液比例系統(tǒng) 3.1 電動(dòng)液壓的比例閥門(mén) 動(dòng)力學(xué)特性 在本文中,電液比例閥包括比例減壓閥和 SX-14 主要閥 .傳遞功能從輸入液流的閥芯位移可如下 : Xv(s) Iv(s)=KI (1+bs) (1) 其中 Xv 是 xv 的 拉 普拉斯變換 值,單位為 m; KI 是電液比例閥獲得的液流,單位為 m/A; b 是一階系統(tǒng)的時(shí)間常數(shù),單位為 s; Iv=I(t)-Id, I(t)和 Id 分別表示比例閥門(mén)的控制潮流和克服靜帶的各自潮流,單位為 A 。 3.2 電動(dòng)液壓的比例閥門(mén)的流體運(yùn)動(dòng)方程 在 本文中,實(shí)驗(yàn)性機(jī)器人挖掘機(jī)采取了 LUDV 系統(tǒng)。根據(jù) LUDV 系統(tǒng)的理論,可以得到流體運(yùn)動(dòng)方程 : 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 11 2 pwxcQ vd 222 pwxcQvd = 其中 p 是負(fù)荷傳感閥門(mén)的壓力差,單位為 MPa; cd是徑流系數(shù),單位為 m5 (Ns);w 是管口的面積梯度,單位為 m2 m; 是油密度,單位為 kg/m3; 1p 和 2p 分別為二個(gè)管口壓力,單位為 MPa;當(dāng)挖掘機(jī)流程沒(méi)有飽和時(shí), p 是一幾乎恒定。在本文中,其值由實(shí)驗(yàn)測(cè)試得到。 在圖 4 中, ps, p1s,和 p 分別表示系統(tǒng)壓力、負(fù)荷傳感閥門(mén)壓力和它們的壓力差;壓力系統(tǒng)的實(shí)驗(yàn)曲線(xiàn)顯示三種不同的壓力值。雖然 ps 和 p1s隨著荷載而改變,但是他們的區(qū)別不會(huì)隨著荷載而改變,其值接近對(duì) 2.0MPa。因此,對(duì)橫跨閥門(mén)的流量的作用 p可以被忽略。假設(shè),流 過(guò)閥門(mén)的流量與管口閥門(mén)的大小成比例,并且荷載不影響流量。那么方程 (2)能被 簡(jiǎn)化為 : Q1=Kqxv(t),I(t)0 (4) 其中 Kq是閥門(mén)流量系數(shù),單位為 m2/s;并且 /2 pwcKdq 圖 4 動(dòng)臂移動(dòng)壓力曲線(xiàn)圖 3.3 液壓缸的連續(xù)性方程 一般來(lái)說(shuō),工程機(jī)械不允許外泄。當(dāng)前,外在泄漏可以通過(guò)密封技術(shù)控制。另 一 0)(/2 1 tIppwxc rvd , ( 2) 壓力 0)(2 tIpwxc vd , 0)(/2 2 tIppwxc rvd , 0)(2 tIpwxc vd , (3) 時(shí)間 重慶交通大學(xué)二 OO 九屆畢業(yè)設(shè)計(jì)(論文) 譯文 方面,由實(shí)驗(yàn)證明了挖掘機(jī)內(nèi)部泄漏是相當(dāng)小的。因此,液壓機(jī)構(gòu)內(nèi)部和外在泄漏的影響可以被忽略。當(dāng)油流進(jìn)汽缸無(wú)桿腔并且進(jìn)入到有桿腔內(nèi)時(shí),連續(xù)性方程可以寫(xiě)成 : cpVyAQ /1111 cpVyAQ /2222 其中 V1 和 V2 分別表示流入及流出的液壓缸液體的體積,單位是 m3;c是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論