




全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
維納濾波實現(xiàn)模糊圖像恢復(fù)摘要維納濾波器是最小均方差準(zhǔn)則下的最佳線性濾波器,它在圖像處理中有著重要的應(yīng)用。本文主要通過介紹維納濾波的結(jié)構(gòu)原理,以及應(yīng)用此方法通過MATLAB函數(shù)來完成圖像的復(fù)原。關(guān)鍵詞:維納函數(shù)、圖像復(fù)原一、引言 在人們的日常生活中,常常會接觸很多的圖像畫面,而在景物成像的過程中有可能出現(xiàn)模糊,失真,混入噪聲等現(xiàn)象,最終導(dǎo)致圖像的質(zhì)量下降,我們現(xiàn)在把它還原成本來的面目,這就叫做圖像還原。引起圖像的模糊的原因有很多,舉例來說有運動引起的,高斯噪聲引起的,斑點噪聲引起的,椒鹽噪聲引起的等等,而圖像的復(fù)原也有很多,常見的例如逆濾波復(fù)原法,維納濾波復(fù)原法,約束最小二乘濾波復(fù)原法等等。它們算法的基本原理是,在一定的準(zhǔn)則下,采用數(shù)學(xué)最優(yōu)化的方法從退化的圖像去推測圖像的估計問題。因此在不同的準(zhǔn)則下及不同的數(shù)學(xué)最優(yōu)方法下便形成了各種各樣的算法。而我接下來要介紹的算法是一種很典型的算法,維納濾波復(fù)原法。它假定輸入信號為有用信號與噪聲信號的合成,并且它們都是廣義平穩(wěn)過程和它們的二階統(tǒng)計特性都已知。維納根據(jù)最小均方準(zhǔn)則,求得了最佳線性濾波器的的參數(shù),這種濾波器被稱為維納濾波。二、維納濾波器的結(jié)構(gòu) 維納濾波自身為一個FIR或IIR濾波器,對于一個線性系統(tǒng),如果其沖擊響應(yīng)為,則當(dāng)輸入某個隨機信號時,Y(n)= 式(1)這里的輸入 式(2)式中s(n)代表信號,v(n)代表噪聲。我們希望這種線性系統(tǒng)的輸出是盡可能地逼近s(n)的某種估計,并用s(n)表示,即 式(3)因而該系統(tǒng)實際上也就是s(n)的一種估計器。這種估計器的主要功能是利用當(dāng)前的觀測值x(n)以及一系列過去的觀測值x(n-1),x(n-2),來完成對當(dāng)前信號值的某種估計。維納濾波屬于一種最佳線性濾波或線性最優(yōu)估計,是一最小均方誤差作為計算準(zhǔn)則的一種濾波。設(shè)信號的真值與其估計值分別為s(n)和,而它們之間的誤差 式(4)則稱為估計誤差。估計誤差e(n)為可正可負(fù)的隨機變量,用它的均方值描述誤差的大小顯然更為合理。而均方誤差最小,也就是 式(5)最小。利用最小均方誤差作為最佳過濾準(zhǔn)則比較方便,它不涉及概率的描述,而且以它導(dǎo)出的最佳線性系統(tǒng)對其它很廣泛的一類準(zhǔn)則而言是屬最佳。三、維納濾波器的局限 維納濾波復(fù)原法存在著幾個實質(zhì)性的局限。第一,最有標(biāo)準(zhǔn)是基于最小均方誤差的且對所有誤差等權(quán)處理,這個標(biāo)準(zhǔn)在數(shù)學(xué)上可以接受,但卻是個不適合人眼的方式,原因在于人類對復(fù)原錯誤的感知在具有一致灰度和亮度的區(qū)域中更為嚴(yán)重,而對于出現(xiàn)在暗的和高梯度區(qū)域的誤差敏感性差得多。第二,空間可變的退化不能用維納濾波復(fù)原法復(fù)原,而這樣的退化是常見的。第三,維納濾波不能處理非平穩(wěn)信號和噪聲。四、模擬仿真 運行結(jié)果運行程序代碼clear;I=imread(img_orignal.tif);figure;subplot(2,2,1);imshow(I);title(原圖像);m,n=size(I);F=fftshift(fft2(I);k=0.005;for u=1:m for v=1:n H(u,v)=exp(-k)*(u-m/2)2+(v-n/2)2)(5/6); endendG=F.*H;I0=real(ifft2(fftshift(G);I1=imnoise(uint8(I0),gaussian,0,0.001)subplot(2,2,2);imshow(uint8(I1);title(模糊退化且添加高斯噪聲的圖像);F0=fftshift(fft2(I1);K=0.1;for u=1:m for v=1:n H(u,v)=exp(-k*(u-m/2)2+(v-n/2)2)(5/6); H0(u,v)=(abs(H(u,v)2; H1(u,v)=H0(u,v)/(H(u,v)*(H0(u,v)+K); endendF2=H1.*F0;I2=ifft2(fftshift(F2);subplot(2,2,3);imshow(uint8(I2);title(維納濾波復(fù)原圖);五、結(jié)論與心得體會 通過這個實驗,使我們更加深刻和具體的了解到了維納濾波的原理,功能以及在圖像處理方面的應(yīng)用。維納濾波器是對噪聲背景下的信號進(jìn)行估計,它是最小均方誤差準(zhǔn)則下的最佳線性濾波器。在實驗的過程中,我發(fā)現(xiàn)采用維納濾波復(fù)原可以得到比較好的效果,這個算法可以使估計的點擴散函數(shù)值更加接近它的真實值。但實現(xiàn)維納濾波的要求是輸入過程是廣義平穩(wěn)的;輸入過程的統(tǒng)計特性是已知的。根據(jù)其他最佳準(zhǔn)則的濾波器也有同樣的要求。然而,由于輸入過程取決與外界信號,干擾環(huán)境,這種環(huán)境的統(tǒng)計特性常常是未知的,變化的,因而這兩個要求很難滿足,這就促使人們研究自適應(yīng)濾波器。附:維納濾波器的設(shè)計方法 維納-霍夫方程維納濾波器的設(shè)計,實際上就是在最小均方誤差條件下探索和確定濾波器的沖激函數(shù)h(n)或系統(tǒng)函數(shù)H(z),也就是求解維納-霍夫方程的問題。對于物理可實現(xiàn)系統(tǒng),由(1)式得 式(6)它實現(xiàn)的是將當(dāng)前的及過去的諸輸入值作相應(yīng)的加權(quán)后的求和運算。故維納濾波的設(shè)計則是確定均方誤差 式(7)最小意義下的沖激響應(yīng)h(n)。為便于得出矩陣表達(dá)式,我們將(6)式改寫成 式(8)式中 式(9)因此 式(10)為求得最小時的hi,我們將(10)式對hi求偏導(dǎo),得 式(11)再令其為零,即或, 式(12)從而可以確定我們所需要的hi。由于(12)式看出,滿足正交性原理與滿足均方誤差最小的條件是一致的。由于,以及,將其代入(12)式可得 式(13)若將(13)式與(15)式稱為維納-霍夫方程。為表述的方便,我們將維納-霍夫方程寫成矩陣形式,即 式(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合作伙伴供貨合同
- 航空器制造材料與工藝的原理及應(yīng)用題
- 描述一次難忘的旅行經(jīng)歷記事作文(4篇)
- 醫(yī)療器械安全使用認(rèn)證證明(6篇)
- 2025居間代理采購合同范本專業(yè)版范文
- 2025年公有土地使用權(quán)轉(zhuǎn)讓合同范本
- 海洋之謎的探索讀后感(7篇)
- 2025年基金從業(yè)資格證之私募股權(quán)投資基金基礎(chǔ)知識題庫附答案(突破訓(xùn)練)
- 我的青春夢想話題作文14篇
- 農(nóng)村資源綜合開發(fā)利用協(xié)議條款書
- 淮安監(jiān)理員試題及答案
- 機電工程2025年技術(shù)經(jīng)濟學(xué)試題及答案
- 2025年糧食倉儲行業(yè)調(diào)研分析報告
- 2025年“巴渝工匠”杯職業(yè)技能競賽(調(diào)飲師賽項)備賽試題庫(含答案)
- 2025遼寧沈陽副食集團所屬企業(yè)招聘25人筆試參考題庫附帶答案詳解
- 2025吉林省農(nóng)村信用社員工招聘考試正式筆試歷年典型考題及考點剖析附帶答案詳解
- 電動車企業(yè)創(chuàng)業(yè)計劃書范文
- 2025年法律法規(guī)考試高分攻略試題及答案
- 2024-2025新入員工安全培訓(xùn)考試試題及參考答案(達(dá)標(biāo)題)
- 2025春國開《創(chuàng)業(yè)基礎(chǔ)》形考任務(wù)1-4答案
- 2025陜西中考:歷史必背知識點
評論
0/150
提交評論