矩陣求導(dǎo)公式.docx_第1頁
矩陣求導(dǎo)公式.docx_第2頁
矩陣求導(dǎo)公式.docx_第3頁
矩陣求導(dǎo)公式.docx_第4頁
矩陣求導(dǎo)公式.docx_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

轉(zhuǎn)載矩陣求導(dǎo)公式【轉(zhuǎn)】 (2011-11-15 11:03:34)轉(zhuǎn)載標(biāo)簽:轉(zhuǎn)載原文地址:矩陣求導(dǎo)公式【轉(zhuǎn)】作者:三寅今天推導(dǎo)公式,發(fā)現(xiàn)居然有對矩陣的求導(dǎo),狂汗-完全不會。不過還好網(wǎng)上有人總結(jié)了。吼吼,趕緊搬過來收藏備份?;竟剑篩 = A * X - DY/DX = AY = X * A - DY/DX = AY = A * X * B - DY/DX = A * BY = A * X * B - DY/DX = B * A1. 矩陣Y對標(biāo)量x求導(dǎo):相當(dāng)于每個元素求導(dǎo)數(shù)后轉(zhuǎn)置一下,注意MN矩陣求導(dǎo)后變成NM了Y = y(ij) - dY/dx = dy(ji)/dx2. 標(biāo)量y對列向量X求導(dǎo):注意與上面不同,這次括號內(nèi)是求偏導(dǎo),不轉(zhuǎn)置,對N1向量求導(dǎo)后還是N1向量y = f(x1,x2,.,xn) - dy/dX = (Dy/Dx1,Dy/Dx2,.,Dy/Dxn)3. 行向量Y對列向量X求導(dǎo):注意1M向量對N1向量求導(dǎo)后是NM矩陣。將Y的每一列對X求偏導(dǎo),將各列構(gòu)成一個矩陣。重要結(jié)論:dX/dX = Id(AX)/dX = A4. 列向量Y對行向量X求導(dǎo):轉(zhuǎn)化為行向量Y對列向量X的導(dǎo)數(shù),然后轉(zhuǎn)置。注意M1向量對1N向量求導(dǎo)結(jié)果為MN矩陣。dY/dX = (dY/dX)5. 向量積對列向量X求導(dǎo)運算法則:注意與標(biāo)量求導(dǎo)有點不同。d(UV)/dX = (dU/dX)V + U(dV/dX)d(UV)/dX = (dU/dX)V + (dV/dX)U重要結(jié)論:d(XA)/dX = (dX/dX)A + (dA/dX)X = IA + 0X = Ad(AX)/dX = (d(XA)/dX) = (A) = Ad(XAX)/dX = (dX/dX)AX + (d(AX)/dX)X = AX + AX6. 矩陣Y對列向量X求導(dǎo):將Y對X的每一個分量求偏導(dǎo),構(gòu)成一個超向量。注意該向量的每一個元素都是一個矩陣。7. 矩陣積對列向量求導(dǎo)法則:d(uV)/dX = (du/dX)V + u(dV/dX)d(UV)/dX = (dU/dX)V + U(dV/dX)重要結(jié)論:d(XA)/dX = (dX/dX)A + X(dA/dX) = IA + X0 = A8. 標(biāo)量y對矩陣X的導(dǎo)數(shù):類似標(biāo)量y對列向量X的導(dǎo)數(shù),把y對每個X的元素求偏導(dǎo),不用轉(zhuǎn)置。dy/dX = Dy/Dx(ij) 重要結(jié)論:y = UXV = u(i)x(ij)v(j) 于是 dy/dX = u(i)v(j) = UVy = UXXU 則 dy/dX = 2XUUy = (XU-V)(XU-V) 則 dy/dX = d(UXXU - 2VXU + VV)/dX = 2XUU - 2VU + 0 = 2(XU-V)U9. 矩陣Y對矩陣X的導(dǎo)數(shù):將Y的每個元素對X求導(dǎo),然后排在一起形成超級矩陣。10.乘積的導(dǎo)數(shù)d(f*g)/dx=(df/dx)g+(dg/dx)f結(jié)論d(xAx)=(d(x)/dx)Ax+(d(Ax)/dx)(x)=Ax+Ax(注意:是表示兩次轉(zhuǎn)置)比較詳細(xì)點的如下:/blog/static/145880136201051113615571//wangwen926/blog/item/eb189bf6b0fb702b720eec94.html其他參考:Contents Notation Derivatives of Linear Products Derivatives of Quadratic ProductsNotation d/dx(y)is a vector whose(i)element isdy(i)/dx d/dx(y) is a vector whose(i)element isdy/dx(i) d/dx(yT) is a matrix whose(i,j)element isdy(j)/dx(i) d/dx(Y) is a matrix whose(i,j)element isdy(i,j)/dx d/dX(y) is a matrix whose(i,j)element isdy/dx(i,j)Note that the Hermitian transpose is not used because complex conjugates are not analytic.In the expressions below matrices and vectorsA,B,Cdo not depend onX.Derivatives of Linear Products d/dx(AYB)=A*d/dx(Y) *B d/dx(Ay)=A*d/dx(y) d/dx(xTA)=A d/dx(xT)=I d/dx(xTa)= d/dx(aTx) =a d/dX(aTXb) =abT d/dX(aTXa) =d/dX(aTXTa) =aaT d/dX(aTXTb) =baT d/dx(YZ)=Y*d/dx(Z) +d/dx(Y)* ZDerivatives of Quadratic Products d/dx(Ax+b)TC(Dx+e) =ATC(Dx+e)+DTCT(Ax+b) d/dx(xTCx) = (C+CT)x C: symmetric:d/dx(xTCx) = 2Cx d/dx(xTx) = 2x d/dx(Ax+b)T(Dx+e) =AT(Dx+e)+DT(Ax+b) d/dx(Ax+b)T(Ax+b) = 2AT(Ax+b) C: symmetric:d/dx(Ax+b)TC(Ax+b) = 2ATC(Ax+b) d/dX(aTXTXb) =X(abT+ baT) d/dX(aTXTXa) = 2XaaT d/dX(aTXTCXb) =CTXabT+ CXbaT d/dX(aTXTCXa) =(C + CT)XaaT C:Symmetricd/dX(aTXTCXa) =2CXaaT d/dX(Xa+b)TC(Xa+b) = (C+CT)(Xa+b)aTDerivatives of Cubic Products d/dx(xTAxxT) = (A+AT)xxT+xTAxIDerivatives of Inverses d/dx(Y-1) =-Y-1d/dx(Y)Y-1Derivative of TraceNote: matrix dimensions must result in ann*nargument for tr(). d/dX(tr(X) =I d/dX(tr(Xk) =k(Xk-1)T d/dX(tr(AXk) =SUMr=0:k-1(XrAXk-r-1)T d/dX(tr(AX-1B) =-(X-1BAX-1)T d/dX(tr(AX-1) =d/dX(tr(X-1A) =-X-TATX-T d/dX(tr(ATXBT) =d/dX(tr(BXTA) =AB d/dX(tr(XAT) =d/dX(tr(ATX) =d/dX(tr(XTA) =d/dX(tr(AXT)= A d/dX(tr(AXBXT) =ATXBT+AXB d/dX(tr(XAXT) =X(A+AT) d/dX(tr(XTAX) =XT(A+AT) d/dX(tr(AXTX) =(A+AT)X d/dX(tr(AXBX) =ATXTBT+BTXTAT C:symmetricd/dX(tr(XTCX)-1A) =d/dX(tr(A (XTCX)-1) =-(CX(XTCX)-1)(A+AT)(XTCX)-1 B,C:symmetricd/dX(tr(XTCX)-1(XTBX) =d/dX(tr( (XTBX)(XTCX)-1) =-2(CX(XTCX)-1)XTBX(XTCX)-1+ 2BX(XTCX)-1Derivative of DeterminantNote: matrix dimensions must result in ann*nargument for det(). d/dX(det(X) =d/dX(det(XT) = det(X)*X-T d/dX(det(AXB) = det(AXB)*X-T d/dX(ln(det(AXB) =X-T d/dX(det(Xk) =k*det(Xk)*X-T d/dX(ln(det(Xk) =kX-T Reald/dX(det(XTCX) = det(XTCX)*(C+CT)X(XTCX)-1 C:Real,Symmetricd/dX(det(XTCX) = 2det(XTCX)* CX(XTCX)-1 C:Real,Symmetriccd/dX(ln(det(XTCX) = 2CX(XTCX)-1JacobianIfyis a function ofx, thendyT/dxis the Jacobian matrix ofywith respect tox.Its determinant, |dyT/dx|, is theJacobianofywith respect toxand represents the ratio of the hyper-volumesdyanddx. The Jacobian occurs when changing variables in an integration: Integral(f(y)dy)=Integral(f(y(x) |dyT/dx| dx).Hessian matrixIf f is a function ofxthen the symmetric matrix d2f/dx2=d/dxT(df/dx) is theHessianmatrix of f(x). A value ofxfor which df/dx=0corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite. d2/dx2(aTx) = 0 d2/dx2(Ax+b)TC(Dx+e) =ATCD+DTCTA d2/dx2(xTCx) =C+CT d2/dx2(xTx) = 2I d2/dx2(Ax+b)T(Dx+e) =ATD+DTA d2/dx2(Ax+b)T(Ax+b) = 2ATA C: symmetric:d2/dx2(Ax+b)TC(Ax+b) = 2ATCAhttp:/www.psi.toronto

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論