數(shù)學人教版六年級下冊鴿巢問題教學設(shè)計.docx_第1頁
數(shù)學人教版六年級下冊鴿巢問題教學設(shè)計.docx_第2頁
數(shù)學人教版六年級下冊鴿巢問題教學設(shè)計.docx_第3頁
數(shù)學人教版六年級下冊鴿巢問題教學設(shè)計.docx_第4頁
數(shù)學人教版六年級下冊鴿巢問題教學設(shè)計.docx_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

鴿巢問題教學內(nèi)容人教版六年級下冊數(shù)學數(shù)學廣角 鴿巢問題,也就是原實驗教材抽屜原理。設(shè)計理念鴿巢問題既鴿巢原理又稱抽屜原理,它是組合數(shù)學的一個基本原理,最先是由德國數(shù)學家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€筒至少放進2支筆”這句話對于學生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個筒至少放進2支筆”這種現(xiàn)象,讓學生理解這句話。其次,充分發(fā)揮學生主動性,讓學生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。學生是學習的主動者,特別是這種原理的初步認識,不應該是教師牽著學生去認識,而是創(chuàng)造條件,讓學生自己去探索,發(fā)現(xiàn)。所以我認為應該提出問題,讓學生在具體的操作中來證明他們的結(jié)論是否正確,讓學生初步經(jīng)歷“數(shù)學證明”的過程,逐步提高學生的邏輯思維能力。再者,適當把握教學要求。我們的教學不同奧數(shù),因此在教學中不需要求學生說理的嚴密性,也不需要學生確定過于抽象的“鴿巢”和“物體”。教材分析鴿巢問題這是一類與“存在性”有關(guān)的問題,如任意13名學生,一定存在兩名學生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“鴿巢問題”。通過第一個例題教學,介紹了較簡單的“鴿巢問題”:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢至少放進2個物體。它意圖讓學生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個筒至少放進2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。第二個例題是在例1的基礎(chǔ)上說明:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢里至少放進(商+1)個物體。因此我認為例2的目的是使學生進一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過程。學情分析可能有一部分學生已經(jīng)了解了鴿巢問題,他們在具體分得過程中,都在運用平均分的方法,也能就一個具體的問題得出結(jié)論。但是這些學生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學生完全沒有接觸,所以他們可能會認為至少的情況就應該是“1”。教學目標1.通過猜測、驗證、觀察、分析等數(shù)學活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建?!彼枷搿?.經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。3.通過“鴿巢原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。教學重點經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。教學難點理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。教具準備:相關(guān)課件 相關(guān)學具(若干筆和筒)教學過程一、游戲激趣,初步體驗。游戲規(guī)則是:請這四位同學從數(shù)字1.2.3中任選一個自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。設(shè)計意圖:聯(lián)系學生的生活實際,激發(fā)學習興趣,使學生積極投入到后面問題的研究中。二、操作探究,發(fā)現(xiàn)規(guī)律。1.具體操作,感知規(guī)律教學例1: 4支筆,三個筒,可以怎么放?請同學們運用實物放一放,看有幾種擺放方法?(1)學生匯報結(jié)果(4 ,0 , 0 ) (3 ,1 ,0) (2 ,2 ,0) (2 , 1 , 1 )(2)師生交流擺放的結(jié)果(3)小結(jié):不管怎么放,總有一個筒里至少放進了2支筆。(學情預設(shè):學生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆。”)設(shè)計意圖:鴿巢問題對于學生來說,比較抽象,特別是“不管怎么放,總有一個筒里至少放進了2支筆?!边@句話的理解。所以通過具體的操作,枚舉所有的情況后,引導學生直接關(guān)注到每種分法中數(shù)量最多的筒,理解“總有一個筒里至少放進了2支筆”。讓學生初步經(jīng)歷“數(shù)學證明”的過程,訓練學生的邏輯思維能力。質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?2.假設(shè)法,用“平均分”來演繹“鴿巢問題”。1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?學生思考同桌交流匯報2匯報想法預設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放4支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。3學生操作演示分法,明確這種分法其實就是“平均分”。設(shè)計意圖:鼓勵學生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學生意識到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。三、探究歸納,形成規(guī)律1.課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應該怎樣列式“平均分”。設(shè)計意圖:引導學生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。根據(jù)學生回答板書:52=21(學情預設(shè):會有一些學生回答,至少數(shù)=商+余數(shù) 至少數(shù)=商+1)根據(jù)學生回答,師邊板書:至少數(shù)=商+余數(shù)?至少數(shù)=商+1 ?2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)75=1285=1395=14觀察板書,同學們有什么發(fā)現(xiàn)嗎?得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(商+1)個物體”的結(jié)論。板書:至少數(shù)=商+1設(shè)計意圖:對規(guī)律的認識是循序漸進的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2支”得到“至少商+余數(shù)”個,再到得到“商+1”的結(jié)論。師過渡語:同學們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!傍澇苍怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應用這一原理解決問題。四、運用規(guī)律解決生活中的問題課件出示習題.:1. 三個小朋友同行,其中必有幾個小朋友性別相同。2. 五年

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論