2019年高考—圓錐曲線知識(shí)點(diǎn)總結(jié).doc_第1頁(yè)
2019年高考—圓錐曲線知識(shí)點(diǎn)總結(jié).doc_第2頁(yè)
2019年高考—圓錐曲線知識(shí)點(diǎn)總結(jié).doc_第3頁(yè)
2019年高考—圓錐曲線知識(shí)點(diǎn)總結(jié).doc_第4頁(yè)
2019年高考—圓錐曲線知識(shí)點(diǎn)總結(jié).doc_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

.2019年高考專題-圓錐曲線的方程與性質(zhì)1橢圓(1)橢圓概念平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點(diǎn)在x軸上)或()(焦點(diǎn)在y軸上)。注:以上方程中的大小,其中;在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。例如橢圓(,)當(dāng)時(shí)表示焦點(diǎn)在軸上的橢圓;當(dāng)時(shí)表示焦點(diǎn)在軸上的橢圓。(2)橢圓的性質(zhì)范圍:由標(biāo)準(zhǔn)方程知,說(shuō)明橢圓位于直線,所圍成的矩形里;對(duì)稱性:在曲線方程里,若以代替方程不變,所以若點(diǎn)在曲線上時(shí),點(diǎn)也在曲線上,所以曲線關(guān)于軸對(duì)稱,同理,以代替方程不變,則曲線關(guān)于軸對(duì)稱。若同時(shí)以代替,代替方程也不變,則曲線關(guān)于原點(diǎn)對(duì)稱。所以,橢圓關(guān)于軸、軸和原點(diǎn)對(duì)稱。這時(shí),坐標(biāo)軸是橢圓的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,橢圓的對(duì)稱中心叫橢圓的中心;頂點(diǎn):確定曲線在坐標(biāo)系中的位置,常需要求出曲線與軸、軸的交點(diǎn)坐標(biāo)。在橢圓的標(biāo)準(zhǔn)方程中,令,得,則,是橢圓與軸的兩個(gè)交點(diǎn)。同理令得,即,是橢圓與軸的兩個(gè)交點(diǎn)。所以,橢圓與坐標(biāo)軸的交點(diǎn)有四個(gè),這四個(gè)交點(diǎn)叫做橢圓的頂點(diǎn)。同時(shí),線段、分別叫做橢圓的長(zhǎng)軸和短軸,它們的長(zhǎng)分別為和,和分別叫做橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)。由橢圓的對(duì)稱性知:橢圓的短軸端點(diǎn)到焦點(diǎn)的距離為;在中,且,即;離心率:橢圓的焦距與長(zhǎng)軸的比叫橢圓的離心率。,且越接近,就越接近,從而就越小,對(duì)應(yīng)的橢圓越扁;反之,越接近于,就越接近于,從而越接近于,這時(shí)橢圓越接近于圓。當(dāng)且僅當(dāng)時(shí),兩焦點(diǎn)重合,圖形變?yōu)閳A,方程為。2雙曲線(1)雙曲線的概念平面上與兩點(diǎn)距離的差的絕對(duì)值為非零常數(shù)的動(dòng)點(diǎn)軌跡是雙曲線()。注意:式中是差的絕對(duì)值,在條件下;時(shí)為雙曲線的一支;時(shí)為雙曲線的另一支(含的一支);當(dāng)時(shí),表示兩條射線;當(dāng)時(shí),不表示任何圖形;兩定點(diǎn)叫做雙曲線的焦點(diǎn),叫做焦距。橢圓和雙曲線比較:橢 圓雙 曲 線定義方程焦點(diǎn)注意:如何用方程確定焦點(diǎn)的位置?。?)雙曲線的性質(zhì)范圍:從標(biāo)準(zhǔn)方程,看出曲線在坐標(biāo)系中的范圍:雙曲線在兩條直線的外側(cè)。即,即雙曲線在兩條直線的外側(cè)。對(duì)稱性:雙曲線關(guān)于每個(gè)坐標(biāo)軸和原點(diǎn)都是對(duì)稱的,這時(shí),坐標(biāo)軸是雙曲線的對(duì)稱軸,原點(diǎn)是雙曲線的對(duì)稱中心,雙曲線的對(duì)稱中心叫做雙曲線的中心。頂點(diǎn):雙曲線和對(duì)稱軸的交點(diǎn)叫做雙曲線的頂點(diǎn)。在雙曲線的方程里,對(duì)稱軸是軸,所以令得,因此雙曲線和軸有兩個(gè)交點(diǎn),他們是雙曲線的頂點(diǎn)。令,沒(méi)有實(shí)根,因此雙曲線和y軸沒(méi)有交點(diǎn)。1)注意:雙曲線的頂點(diǎn)只有兩個(gè),這是與橢圓不同的(橢圓有四個(gè)頂點(diǎn)),雙曲線的頂點(diǎn)分別是實(shí)軸的兩個(gè)端點(diǎn)。2)實(shí)軸:線段叫做雙曲線的實(shí)軸,它的長(zhǎng)等于叫做雙曲線的實(shí)半軸長(zhǎng)。虛軸:線段叫做雙曲線的虛軸,它的長(zhǎng)等于叫做雙曲線的虛半軸長(zhǎng)。漸近線:注意到開(kāi)課之初所畫(huà)的矩形,矩形確定了兩條對(duì)角線,這兩條直線即稱為雙曲線的漸近線。從圖上看,雙曲線的各支向外延伸時(shí),與這兩條直線逐漸接近。等軸雙曲線:1)定義:實(shí)軸和虛軸等長(zhǎng)的雙曲線叫做等軸雙曲線。定義式:;2)等軸雙曲線的性質(zhì):(1)漸近線方程為: ;(2)漸近線互相垂直。注意以上幾個(gè)性質(zhì)與定義式彼此等價(jià)。亦即若題目中出現(xiàn)上述其一,即可推知雙曲線為等軸雙曲線,同時(shí)其他幾個(gè)亦成立。3)注意到等軸雙曲線的特征,則等軸雙曲線可以設(shè)為: ,當(dāng)時(shí)交點(diǎn)在軸,當(dāng)時(shí)焦點(diǎn)在軸上。注意與的區(qū)別:三個(gè)量中不同(互換)相同,還有焦點(diǎn)所在的坐標(biāo)軸也變了。3拋物線(1)拋物線的概念平面內(nèi)與一定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線(定點(diǎn)F不在定直線l上)。定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線。方程叫做拋物線的標(biāo)準(zhǔn)方程。注意:它表示的拋物線的焦點(diǎn)在x軸的正半軸上,焦點(diǎn)坐標(biāo)是F(,0),它的準(zhǔn)線方程是 ;(2)拋物線的性質(zhì)一條拋物線,由于它在坐標(biāo)系的位置不同,方程也不同,有四種不同的情況,所以拋物線的標(biāo)準(zhǔn)方程還有其他幾種形式:,.這四種拋物線的圖形、標(biāo)準(zhǔn)方程、焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程如下表:標(biāo)準(zhǔn)方程圖形焦點(diǎn)坐標(biāo)準(zhǔn)線方程范圍對(duì)稱性軸軸軸軸頂點(diǎn)離心率說(shuō)明:(1)通徑:過(guò)拋物線的焦點(diǎn)且垂直于對(duì)稱軸的弦稱為通徑;(2)拋物線的幾何性質(zhì)的特點(diǎn):有一個(gè)頂點(diǎn),一個(gè)焦點(diǎn),一條準(zhǔn)線,一條對(duì)稱軸,無(wú)對(duì)稱中心,沒(méi)有漸近線;(3)注意強(qiáng)調(diào)的幾何意義:是焦點(diǎn)到準(zhǔn)線的距離。(一)橢圓的定義:1、橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離之和等于定長(zhǎng)(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn) 、叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距。對(duì)橢圓定義的幾點(diǎn)說(shuō)明:(1)“在平面內(nèi)”是前提,否則得不到平面圖形(去掉這個(gè)條件,我們將得到一個(gè)橢球面);(2)“兩個(gè)定點(diǎn)”的設(shè)定不同于圓的定義中的“一個(gè)定點(diǎn)”,學(xué)習(xí)時(shí)注意區(qū)分;(3)作為到這兩個(gè)定點(diǎn)的距離的和的“常數(shù)”,必須滿足大于| F1F2|這個(gè)條件。若不然,當(dāng)這個(gè)“常數(shù)”等于| F1F2|時(shí),我們得到的是線段F1F2;當(dāng)這個(gè)“常數(shù)”小于| F1F2|時(shí),無(wú)軌跡。這兩種特殊情況,同學(xué)們必須注意。(4)下面我們對(duì)橢圓進(jìn)行進(jìn)一步觀察,發(fā)現(xiàn)它本身具備對(duì)稱性,有兩條對(duì)稱軸和一個(gè)對(duì)稱中心,我們把它的兩條對(duì)稱軸與橢圓的交點(diǎn)記為A1, A2, B1, B2,于是我們易得| A1A2|的值就是那個(gè)“常數(shù)”,且|B2F2|+|B2F1|、|B1F2|+|B1F1|也等于那個(gè)“常數(shù)”。同學(xué)們想一想其中的道理。(5)中心在原點(diǎn)、焦點(diǎn)分別在x軸上,y 軸上的橢圓標(biāo)準(zhǔn)方程分別為:相同點(diǎn)是:形狀相同、大小相同;都有 a b 0 ,。不同點(diǎn)是:兩種橢圓相對(duì)于坐標(biāo)系的位置不同,它們的焦點(diǎn)坐標(biāo)也不同(第一個(gè)橢圓的焦點(diǎn)坐標(biāo)為(c,0)和(c,0),第二個(gè)橢圓的焦點(diǎn)坐標(biāo)為(0,c)和(0,c)。橢圓的焦點(diǎn)在 x 軸上標(biāo)準(zhǔn)方程中x2項(xiàng)的分母較大;橢圓的焦點(diǎn)在 y 軸上標(biāo)準(zhǔn)方程中y2項(xiàng)的分母較大。(二)橢圓的幾何性質(zhì):橢圓的幾何性質(zhì)可分為兩類:一類是與坐標(biāo)系有關(guān)的性質(zhì),如頂點(diǎn)、焦點(diǎn)、中心坐標(biāo);一類是與坐標(biāo)系無(wú)關(guān)的本身固有性質(zhì),如長(zhǎng)、短軸長(zhǎng)、焦距、離心率對(duì)于第一類性質(zhì),只要的有關(guān)性質(zhì)中橫坐標(biāo)x和縱坐標(biāo)y互換,就可以得出的有關(guān)性質(zhì)。總結(jié)如下:幾點(diǎn)說(shuō)明:(1)長(zhǎng)軸:線段,長(zhǎng)為;短軸:線段,長(zhǎng)為;焦點(diǎn)在長(zhǎng)軸上。(2)對(duì)于離心率e,因?yàn)閍c0,所以0e2,解之得0k0,n0,mn),把P(,4),Q(,3)代入得解得m1,n,故橢圓方程為x21。10. 解析:設(shè)弦的兩端點(diǎn)分別為A(x1,y1)、B(x2,y2),則有1,1兩式相減得即弦所在直線的斜率為,又弦過(guò)(2,1)點(diǎn),故弦所在直線的方程是x2y40 11. 解:設(shè)頂點(diǎn)A的坐標(biāo)為(x,y),由題意得: 頂點(diǎn)A的軌跡方程為:1(y6) 12. 解:以直線MN為x軸,以線段MN的中垂線為y軸建立平面直角坐標(biāo)系,如圖所示

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論