


全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
橢圓離心率專題訓(xùn)練一、直接求出或求出a與b的比值,以求解。在橢圓中,1.已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率等于 2.已知橢圓兩條準(zhǔn)線間的距離是焦距的2倍,則其離心率為 3.若橢圓經(jīng)過原點(diǎn),且焦點(diǎn)為,則橢圓的離心率為 4.已知矩形ABCD,AB4,BC3,則以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的離心率為 。5.橢圓短軸端點(diǎn)為滿足,則橢圓的離心率為 。6.已知?jiǎng)t當(dāng)mn取得最小值時(shí),橢圓的的離心率為 7.橢圓的焦點(diǎn)為,兩條準(zhǔn)線與軸的交點(diǎn)分別為,若,則該橢圓離心率的取值范圍是 8.已知F1為橢圓的左焦點(diǎn),A、B分別為橢圓的右頂點(diǎn)和上頂點(diǎn),P為橢圓上的點(diǎn),當(dāng)PF1F1A,POAB(O為橢圓中心)時(shí),橢圓的離心率為 。9.P是橢圓+=1(ab0)上一點(diǎn),是橢圓的左右焦點(diǎn),已知 橢圓的離心率為 10.已知是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),若, 則橢圓的離心率為 11.在給定橢圓中,過焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1,則該橢圓的離心率為 12.設(shè)橢圓=1(ab0)的右焦點(diǎn)為F1,右準(zhǔn)線為l1,若過F1且垂直于x軸的弦的長(zhǎng)等于點(diǎn)F1到l1的距離,則橢圓的離心率是 。13.橢圓(ab0)的兩頂點(diǎn)為A(a,0)B(0,b),若右焦點(diǎn)F到直線AB的距離等于AF,則橢圓的離心率是 。 14.橢圓(ab0)的四個(gè)頂點(diǎn)為A、B、C、D,若四邊形ABCD的內(nèi)切圓恰好過焦點(diǎn),則橢圓的離心率是 15.已知直線L過橢圓(ab0)的頂點(diǎn)A(a,0)、B(0,b),如果坐標(biāo)原點(diǎn)到直線L的距離為,則橢圓的離心率是 16.在平面直角坐標(biāo)系中,橢圓1( 0)的焦距為2,以O(shè)為圓心,為半徑作圓,過點(diǎn)作圓的兩切線互相垂直,則離心率= 17.設(shè)橢圓的離心率為,右焦點(diǎn)為,方程 的兩個(gè)實(shí)根分別為和,則點(diǎn)()必在圓內(nèi)必在圓上必在圓外以上三種情形都有可能二、構(gòu)造的齊次式,解出1已知橢圓的焦距、短軸長(zhǎng)、長(zhǎng)軸長(zhǎng)成等差數(shù)列,則橢圓的離心率是 2以橢圓的右焦點(diǎn)F2為圓心作圓,使該圓過橢圓的中心并且與橢圓交于M、N兩點(diǎn),橢圓的左焦點(diǎn)為F1,直線MF1與圓相切,則橢圓的離心率是 3以橢圓的一個(gè)焦點(diǎn)F為圓心作一個(gè)圓,使該圓過橢圓的中心O并且與橢圓交于M、N兩點(diǎn),如果MF=MO,則橢圓的離心率是 4設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,過F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若F1PF2為等腰直角三角形,則橢圓的離心率是 5已知F1、F2是橢圓的兩個(gè)焦點(diǎn),過F1且與橢圓長(zhǎng)軸垂直的直線交橢圓于A、B兩點(diǎn),若ABF2是正三角形,則這個(gè)橢圓的離心率是 6設(shè)分別是橢圓的左、右焦點(diǎn),P是其右準(zhǔn)線上縱坐標(biāo)為 ( 為半焦距)的點(diǎn),且,則橢圓的離心率是 三、尋找特殊圖形中的不等關(guān)系或解三角形。1已知、是橢圓的兩個(gè)焦點(diǎn),滿足的點(diǎn)總在橢圓內(nèi)部,則橢圓離心率的取值范圍是 2已知是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且,橢圓離心率e的取值范圍為 3已知是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且,橢圓離心率e的取值范圍為 4設(shè)橢圓(ab0)的兩焦點(diǎn)為F1、F2,若橢圓上存在一點(diǎn)Q,使F1QF2=120,橢圓離心率e的取值范圍為 5在中,若以為焦點(diǎn)的橢圓經(jīng)過點(diǎn),則該橢圓的離心率 6設(shè)分別是橢圓()的左、右焦點(diǎn),若在其右準(zhǔn)線上存在 使線段的中垂線過點(diǎn),則橢圓
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電信通訊設(shè)備安全生產(chǎn)培訓(xùn)
- 2025年Samos測(cè)流風(fēng)機(jī)項(xiàng)目投資可行性研究分析報(bào)告
- 演出托管運(yùn)營(yíng)管理制度
- 危險(xiǎn)化學(xué)品包裝(金屬罐)產(chǎn)品質(zhì)量監(jiān)督抽查實(shí)施細(xì)則
- 2025年膏藥市場(chǎng)分析報(bào)告
- 2025年別墅毛毯行業(yè)深度研究分析報(bào)告
- 2024-2025學(xué)年高中數(shù)學(xué)第一章集合與函數(shù)概念1.1.1集合的含義與表示第一課時(shí)集合的含義課時(shí)作業(yè)新人教A版必修1
- 2024-2025學(xué)年高中歷史第三單元從人文精神之源到科學(xué)理性時(shí)代第13課挑戰(zhàn)教皇的權(quán)威課后篇鞏固探究岳麓版必修3
- 2024-2025學(xué)年高中化學(xué)第3章第4節(jié)離子晶體教案新人教版選修3
- 手機(jī)游戲市場(chǎng)全景評(píng)估及發(fā)展趨勢(shì)研究預(yù)測(cè)報(bào)告
- 超市投標(biāo)書范文
- 《工程合同管理與招投標(biāo)實(shí)訓(xùn)》課程電子教案
- 腫瘤科疼痛一病一品
- 2024-2030年中國(guó)礦用錨桿行業(yè)發(fā)展現(xiàn)狀需求分析報(bào)告
- 2024年1月浙江省高考英語(yǔ)真題試卷含答案
- 人民醫(yī)院樣本外送檢測(cè)管理制度
- DG-TJ 08-2451-2024 電動(dòng)自行車集中充電和停放場(chǎng)所設(shè)計(jì)標(biāo)準(zhǔn)
- DB3301-T 65.28-2024 反恐怖防范系統(tǒng)管理規(guī)范 第28部分:硬質(zhì)隔離設(shè)施
- 心電監(jiān)護(hù)儀的操作及注意事項(xiàng) 課件
- 11BS4排水工程華北標(biāo)圖集
- 電子備課教案(一二年級(jí)體育)
評(píng)論
0/150
提交評(píng)論