



全文預覽已結束
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
NumericalSimulationMethodofAcousticFieldPositiveProblembasedonMagnetoacousticTomographywithMagneticInductionHuiXia1,GuoqiangLiu1,YanhongLi1,YangZhang1,ShiqiangLi1andLaifuZhang21.InstituteofElectricalEngineering,ChineseAcademyofSciencesBeijing,China2.ShanxiElectricPowerResearchInstituteShanxi,CAbstractMagnetoacousticimpedancetomographywithmagneticinduction(MAT-MI)isanewimagingmethod.Itsimagesreflectconductivitydistribution.Inthispaper,wefirstlyproposedthenumericalsimulationmethodofmulti-physicsfieldscouplingtoobtainthedistributionofacousticfieldinMAT-MIwithoutthestaticmagneticfield.Simpleacousticdetectionexperimentsareconductedtovalidatethealgorithm.Theresultsdemonstrateditsfeasibility,andmayprovidesometheoreticalfoundationforthefurtherresearchonthereal-timedetectionofacousticsignalsandthereconstructionmethodoftheMAT-MI.Keywords-magnetoacoustictomographywithmagneticinduction(MAT-MI),Multi-physicsfieldscoupling,two-dimensionalaxisymmetricmodel,numericalsimulationofacousticfieldI.INTRODUCTIONAsakindoffunctionalimaging,Electricalimpedancetomography(EIT)hasmanypredominancecomparedwithconventionalimagingmeans,suchasnon-invasivediagnose,highimagingqualityandsoon.ButEIThasnotbeenusedinclinicalapplicationbecauseofitslowresolutionnow1-3.Inordertoresolvetheproblem,Magnetoacoustictomographywithmagneticinduction(MAT-MI)isproposedbyBinHeetal4,whichisshowninFig.1.InMAT-MI,imagingtargetisplacedinastaticmagneticfieldwithpulsedmagneticstimulationimposedonit,thepulsedcurrentinduceseddycurrentinthesample,andtheinducededdycurrentinstaticmagneticfieldgeneratesLorentzforce.TheLorentzforcecausesacousticvibration,andthegeneratedacousticwavecanbemeasuredaroundthesampletoreconstructtheconductivitydistributionofthesample.Figure1.TheillustrationofMAT-MI(quotedfrom4)OnthebasisoftheprincipleMentionedabove,weproposeanewnon-static-magnetMAT-MImethod.Inthispaper,weanalyzetheprinciplesofmulti-physicsfieldscoupling,includingthetwo-dimensionalaxisymmetrictransientelectromagneticfield,displacementfield,soundfield,andputforwardthemethodofmulti-physicscalculations.Onthebasicofaboveall,theformulaforcalculatingthevariousfieldsarederivedindetail,andconductthesimpleacousticdetectionexperimentstovalidatethemethod.II.THENUMERICALSIMULATIONMETHODOFMULTI-PHYSICSFIELDSCOUPLINGThemethodadoptsimpulsingpowersourceasthedrivingsource,excitingcoilgeneratesalternatingelectromagneticfieldwhichexcitesLorentzforceinthesample.TheLorentzforcecausesvibrationofsampleboundary,thenacousticwavesisexcitedintheair.Wecaninversethesampleresistivitybydetectingacousticwavesignal.Thesoundfielddistributionofthesamplecanbesimulatedthroughsolvingthemulti-physicalequationwhichincludeselectromagneticequation,wienerequationofelasticsolidsandsoundfieldequationintheair.A.TheequationofaxisymmetricelectromagneticfieldsTheexcitingcoilishollowcylindricalcoil,androundcoppersheetisselectedasthesample,thesimulationmodelhasaxialsymmetry,sothevectormagneticpotentialAKonlyhascircumferentialcomponent,labeledasA,thecorrespondingaxisymmetricelectromagneticequationis:22s2A1AAAAJrrrrzt+=(1)Whereismagneticpermeability,iselectricalconductivity,andsJiscurrentdensityoftheexcitingcoil.Althoughthecurrentdensityoftheexcitingcoilgeneratesonlycircumferentialcomponent,magneticfluxdensityincludesradialandaxialcomponent,wecangetAJt=978-1-4244-4713-8/10/$25.002010IEEErABz=zAABrr=+(2)Inordertoavoidthesingularityattheboundarywhichrequalstozero,sosupposeuistheratioofAandr,thentheEq.(2)becomes222suuuuur3rrrJrrztt+=(3)OnbothsidesoftheEq.(3)aremultipliedby2r,wecanget222323332suuuuur3rrrrJrrrztt+=(4)Ifnotetherandzforxandyrespectively,weget233332s2uuuuxxxxJxxxyytt+=(5)FromtheEq.(5),wecansee+yuxyxuxx33isthe)(3uxunderrectangularcoordinatesystem,wecanget()23332s2uuxuxxJxtt=(6)AccordingtothesolvingrangeoftheFig2a,wecanseethat1istheairrange,2isthesampleposition,3istheexcitingcoilposition.Inthe1area,conductivityequalszero,andthereisnoexcitingsource.Inthe2area,thereisalsonoexcitingsource.Inthe3area,thecurrentinthecoilisthesourcecurrent.Thenequationofthethreesolvingareascanbewroterespectively()3xu0=(71)()33uxux0t+=(72)()32sxuJx=(73)Atthesymmetryaxisandinfinityboundary,theboundaryconditionisthatuequalszero.So,afterobtainingtheu,substitutingrAU/=intoEq.(1),wecangetelectricfieldintensityandmagneticfluxdensityAuErtt=,ruBrz=,zuBr2ur=+(8)123232323112323Figure2.Solvingmodels(a)Electromagneticfieldsolvingmodel(b)displacementfieldsolvingmodel(c)SoundfieldsolvingmodelBasedonEq.(8),wecanget.sF=JBKKK(9)B.AxisymmetricNavierequationsofelasticsolidsAcordingtothetheoryofcontinuummechanics,thewienerequationofelasticsolidcanbederivedthroughusingmomentumconservationprinciple,lawofconservationofmassandconstitutiveequationofmechanicalpropertiesinaninertialreferenceframe.Thevectorformofthewienerequationcanbewroteas222uGGuuFt12v()=+KKKK(10)Whereuurzt=(,)Kisdisplacementfield,FKisunitvolumeforce,isdensityofcoppersheet,Gisshearmodulus,andvisPoissonsratio.Underthecylindricalcoordinates,Eq.(10)canbewrote22rrrr22uuGGuF12rrt+=(101)22zzz2uGGuF12zt+=(102)rrzuuuurrz=+(103)Where2ru、2zu、randzcanbewrote222rrrr22uuu1urzrr=+(111)222zzzz22uuu1urzrr=+(112)rzrr2uuuu1rrrzrrr=+(113)rzruuu1zzrzrz=+(114)Inordertovoidthesingularityattheboundary,supposeorruur=,andsubstitutingroruu=intoEq.(10-1),andOnbothsidesoftheequationmultipliedbythe2r,wecanget()()()22323ororor22223orzr22G1uuur3rGr12rrzuuGrFr12rzt+=(12)Thesolvingrangeisshowninfigure2b,theboundaryconditionscanbewroteatthe2and3sFnp=KK(13)WheresnKisunitnormalvectorwhichpointingtheoutsideofthesampleorcoil.C.AxisymmetricacousticwaveequationIntheexperiment,becausethereisnoLorentzforceintheair,theacousticwaveequationinthesolvingrangeofFig2ccanbewroteas222210ppct=(14)Inthecylindricalcoordinate,wecanget2222222110=ppppctrrrz(15)Wheretheboundaryconditionisr=0attheaxisofsymmetry,andp=0attheinfinitepoint.Onthe2and3,theboundaryconditionareasfollows,22unpnt=KK(16)AccordingtotheEq.(10)Eq.(16),wecansolvethesoundwavedistributioninthesoundfieldofthesample.III.EXPERIMENTSA.SimulationexperimentInthesimulationprocess,thewaveformofexcitingcurrentcanbeshownasfollow0()sin()=tVItetL(17)wheredischargevoltage0V1000V=,inductionL=7.7H,resistanceR=8.06e-3,capacityC=200F,=R/2L,21/()LC=.Inthecourseofpracticalapplication,thecurrentwaveformisinterceptedbyathyristor,andonlyreservesthefirstpositivespike.Theimpulsewidthisabout120S,numericalsimulationresultofsoundfielddistributionat60SisshownbelowinFig.3.Figure3a.Atthetimeof60s,soundfielddistributionoftheexcitingcoilitselfFigure3b.Atthetimeof60s,soundfielddistributionofthesampleFromtheFig.3a,wefindthatthesoundfielddistributionofexcitingcoilcanbeapproximatelyconsideredasacircularringwhosecenteristhecoilstheinsideandoutsideboundaries,andatthesymmetryaxis,thesoundfieldisthestrongest.Atthesametime,wefind,inthedisplacementy=0,theacousticsignalstrengthgeneratedbycoilitselfisweak,itcanbeshieldedbymeansofsomemeasuresthatcaneffectivelyeliminatetheinfluenceofacousticsignalgeneratedbythecoilitself.0.000000.000030.000060.000090.00012-250000-200000-150000-100000-50000050000100000150000Signalintensity/a.uTime/s0.00050.0010.0020.0050.0080.01Figure4a.Atx=0,thesimulationacousticsignal0.000000.000030.000060.000090.00012-200000-1000000100000Signalintensity/a.uTime/s00.00050.0020.0050.010.15Figure4b.Aty=0.0005,thesimulationacousticsignalInFig.3b,wecanseethatsoundfielddistributionconcentratearoundtheaxisofsymmetry.Inordertofurtherunderstandthecharacteristicsofacousticsignals,weselectthedifferentcoordinatepointstosimulatetheacousticsignal,andthetime-stepsetto10S.Afterachievingtheacousticsignalofthevariouspoint,thecontinuous120Sdataweresegmentedinto0.1SepochsforFFTtransformandobtainthesignalfrequency.Intheaxisofx=0,weobtainthesimulationacousticsignalshowninFig.4a,andintheaxisofy=0.0005m,weobtainthesimulationacousticsignalshowninFig.4b.Afteranalysisandcalculation,wefindthatthefrequencyofacousticwavesignalmainlyconcentrateintherangeof3-5KHzinthesphericalsoundfieldrangewhosecenteristhesamplescenterandradiusisapproximately0.005m.B.AcousticdetectionexperimentWeadopttheexperimentalsystemtodetectthesoundfieldofthecoppersheetsample.Withregardtoadetaileddescriptionoftheexperimentcanrefertoliterature5.Inthesphericalsoundfieldrangewhosecenteristhesamplescenterandtheradiusisapproximately0.005m,theacousticsignalunderexcitationisdetected.ThenweprocessthedetectedsoundsignalbyFFT,andobtainsignalspectrum.TheacousticsignalofmeasurementpointtisshowninFig.5.Figure5.DetectedacousticwavesignalanditsspectrumAftermulti-pointmeasurementandanalysis,wefindthatthefrequencyofdetectedsoundwavesignalmainlyconcentrateinthespectrumrangeof3-5KHz,itisconsistentwiththesimulationresults.Itprovesthatthesimulationmethodofmulti-physicalfieldcouplingiscorrect,themethodofMAT-MIisfeasible.IV.CONCLUSIONMedicalimagingisaresearchdomainwithbroaddevelopmentprospect,itisessentialtotheadvancementofmedicineandimprovementofpeopleslife.Inthispaper,ourmethodshowsthatitispossibletocompletetwo-dimensionalaxisymmetricacousticwavepositionproblemofMAT-MIwithoutthestaticmagneticfield.Itcanbeseenasthetheoreticalreferenceforthefuturestud
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省煙臺市招遠市2024-2025學年物理八上期末統(tǒng)考模擬試題含解析
- 廣東省深圳市南山區(qū)南山中學英文學校2025屆物理八上期末教學質量檢測試題含解析
- 西藏達孜縣2024年九上化學期末檢測試題含解析
- 天津市寧河縣蘆臺五中2024年九上化學期末監(jiān)測模擬試題含解析
- 山東省臨沂經濟開發(fā)區(qū)四校聯考2025屆八上數學期末質量檢測試題含解析
- 餐飲連鎖股東合作協(xié)議及市場拓展與品牌推廣
- 金融投資入門:基礎知識與規(guī)范操作
- 游戲直播平臺運營策略分析
- 2025至2030全球及中國鎖匠軟件行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 幼兒園教師必 備彈唱技巧詳解
- 2025年廣東高考政治試卷真題答案詳解講評(課件)
- 卡口及道路交通智能監(jiān)控系統(tǒng)方案設計
- 2025年家庭照護師職業(yè)資格考試試題及答案
- 呼吸機相關性肺炎的預防和護理
- 2025年綏化市中考化學試題卷(含答案解析)
- 門診口腔院感基礎知識培訓
- 危重病人觀察和護理要點
- 砌體工程培訓課件
- GB/T 45719-2025半導體器件金屬氧化物半導體(MOS)晶體管的熱載流子試驗
- 2025-2030中國醫(yī)藥商業(yè)行業(yè)盈利態(tài)勢與投資潛力分析報告
- 保險公司保單管理制度
評論
0/150
提交評論