![外文翻譯--內(nèi)嵌于可編程控制器的先進(jìn)控制算法 英文文版.pdf_第1頁](http://file.renrendoc.com/FileRoot1/2013-11/17/e2100fa5-544d-42db-90a6-9c6e57c8f46b/e2100fa5-544d-42db-90a6-9c6e57c8f46b1.gif)
![外文翻譯--內(nèi)嵌于可編程控制器的先進(jìn)控制算法 英文文版.pdf_第2頁](http://file.renrendoc.com/FileRoot1/2013-11/17/e2100fa5-544d-42db-90a6-9c6e57c8f46b/e2100fa5-544d-42db-90a6-9c6e57c8f46b2.gif)
![外文翻譯--內(nèi)嵌于可編程控制器的先進(jìn)控制算法 英文文版.pdf_第3頁](http://file.renrendoc.com/FileRoot1/2013-11/17/e2100fa5-544d-42db-90a6-9c6e57c8f46b/e2100fa5-544d-42db-90a6-9c6e57c8f46b3.gif)
![外文翻譯--內(nèi)嵌于可編程控制器的先進(jìn)控制算法 英文文版.pdf_第4頁](http://file.renrendoc.com/FileRoot1/2013-11/17/e2100fa5-544d-42db-90a6-9c6e57c8f46b/e2100fa5-544d-42db-90a6-9c6e57c8f46b4.gif)
![外文翻譯--內(nèi)嵌于可編程控制器的先進(jìn)控制算法 英文文版.pdf_第5頁](http://file.renrendoc.com/FileRoot1/2013-11/17/e2100fa5-544d-42db-90a6-9c6e57c8f46b/e2100fa5-544d-42db-90a6-9c6e57c8f46b5.gif)
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ControlEngineeringPracticeembeddedVrancLjubljana,bNovaGoricaPolytechnic,NovaGorica,Sloveniaidenticationstepstoprovidereliableoperation.Thecontrollermonitorsandevaluatesthecontrolperformanceoftheclosed-loopsystem.Thecontrollerwasimplementedonaprogrammablelogiccontroller(PLC).Theperformanceisillustratedonaeldtestinindustrialapplications,assummarisedbelow:ARTICLEINPRESS/locate/conengpracC3Correspondingauthor.Tel.:+38614773994;1.Becauseofthediversityofreal-lifeproblems,asinglenonlinearcontrolmethodhasarelativelynarrow0967-0661/$-seefrontmatterr2005ElsevierLtd.Allrightsreserved.doi:10.1016/j.conengprac.2005.05.006fax:+38614257009.E-mailaddress:samo.gerksicijs.si(S.Gerksic).applicationforcontrolofpressureonahydraulicvalve.r2005ElsevierLtd.Allrightsreserved.Keywords:Controlengineering;Fuzzymodelling;Industrialcontrol;Model-basedcontrol;Nonlinearcontrol;Programmablelogiccontrollers;Self-tuningregulators1.IntroductionModerncontroltheoryoffersmanycontrolmethodstoachievemoreefcientcontrolofnonlinearprocessesthanprovidedbyconventionallinearmethods,takingadvantageofmoreaccurateprocessmodels(Bequette,1991;Henson&Seborg,1997;Murray-Smith&Johansen,1997).Surveys(Takatsu,Itoh,&Araki,1998;Seborg,1999)indicatethatwhilethereisaconsiderableandgrowingmarketforadvancedcon-trollers,relativelyfewvendorsofferturn-keyproducts.Excellentresultsofadvancedcontrolconcepts,basedonfuzzyparameterscheduling(Tan,Hang,&Chai,1997;Babuska,Oosterhoff,Oudshoorn,&Bruijn,2002),multiple-modelcontrol(Dougherty&Cooper,2003;Gundala,Hoo,&Piovoso,2000),andadaptivecontrol(Henson&Seborg,1994;Hagglund&Astrom,2000),havebeenreportedintheliterature.However,thereareseveralrestrictionsforapplyingthesemethodsdINEAd.o.o.,Ljubljana,SloveniaeComputerTechnologyInstitute,Athens,GreecefUniversityofChemicalTechnologyandMetallurgySofia,Sofia,BulgariaReceived23April2004;accepted15May2005AbstractThispaperpresentsaninnovativeself-tuningnonlinearcontrollerASPECT(advancedcontrolalgorithmsforprogrammablelogiccontrollers).Itisintendedforthecontrolofhighlynonlinearprocesseswhosepropertieschangeradicallyoveritsrangeofoperation,andincludesthreeadvancedcontrolalgorithms.Itisdesignedusingtheconceptsofagent-basedsystems,appliedwiththeaimofautomatingsomeofthecongurationtasks.Theprocessisrepresentedbyasetoflow-orderlocallinearmodelswhoseparametersareidentiedusinganonlinelearningprocedure.Thisprocedurecombinesmodelidenticationwithpre-andpost-cUniversityofLjubljana,FacultyofElectricalEngineering,Ljubljana,SloveniaAdvancedcontrolalgorithmslogiccontrollerSamoGerksica,C3,GregorDolanca,DamirSasoBlazicc,IgorSkrjancc,ZoranMarinsRobertKinge,MinchoHadjiskiaJozefStefanInstitute,inaprogrammableica,JusKocijana,b,StankoStrmcnika,ekd,MihaBozicekd,AnnaStathakie,f,KostaBoshnakovfSlovenia()friendmaticindustfromling,procedcontrollermonitorstheresultingcontrolperformanceARTICLEINPRESSanonlinearprocessmodel.Themodelisobtainedoperatingprocesssignalsbyexperimentalmodel-usinganovelonlinelearningprocedure.ThisThefromforimplementationonPLCoropencontrollerrialhardwareplatforms.controllerparametersareautomaticallytunedfeatuadaptedssioningofthecontrollerissimpliedbyauto-experimentationandtuning.AdistinguishingreofthecontrolleristhatthealgorithmsaremetecommiTheASPECTcontrollerisanefcientanduser-lyengineeringtoolforimplementationofpara-r-schedulingcontrolintheprocessindustry.Theused,thesensorreadings,specichardwareplatformsareetc.isdemandedtoeldofapplication.Therefore,moreexiblemethodsoratoolboxofmethodsarerequiredinindustry.2.Newmethodsareusuallynotavailableinaready-to-useindustrialform.Customdesignrequiresconsider-ableeffort,timeandmoney.3.Thehardwarerequirementsarerelativelyhigh,duetothecomplexityofimplementationandcomputationaldemands.4.Thecomplexityoftuning(Babuskaetal.,2002)andmaintenancemakesthemethodsunattractivetononspecialisedengineers.5.Thereliabilityofnonlinearmodellingisofteninquestion.6.Manynonlinearprocessescanbecontrolledusingthewell-knownandindustriallyprovenPIDcontroller.Aconsiderabledirectperformanceincrease(nancialgain)isdemandedwhenreplacingaconventionalcontrolsystemwithanadvancedone.Themain-tenancecostsofaninadequateconventionalcontrolsolutionmaybelessobvious.Theaimofthisworkistodesignanadvancedcontrollerthataddressessomeoftheaforementionedproblemsbyusingtheconceptsofagent-basedsystems(ABS)(Wooldridge&Jennings,1995).Themainpurposeistosimplifycontrollercongurationbypartialautomationofthecommissioningprocedure,whichistypicallyperformedbythecontrolengineer.ABSsolvedifcultproblemsbyassigningtaskstonetworkedsoftwareagents.Thesoftwareagentsarecharacterisedbypropertiessuchasautonomy(operationwithoutdirectinterventionofhumans),socialability(interactionwithotheragents),reactivity(perceptionandresponsetotheenvironment),pro-activeness(goal-directedbe-haviour,takingtheinitiative),etc.ThisworkdoesnotaddressissuesofABStheory,butrathertheapplicationofthebasicconceptsofABStotheeldofprocesssystemsengineering.Inthiscontext,anumberoflimitshavetobeconsidered.Forexample:initiativeisrestricted,ahighdegreeofreliabilityandpredictability,insightintotheproblemdomainislimitedS.Gerksicetal./ControlEngineerin2ureisbasedonmodelidenticationusingtheandreactstodetectedirregularities.Thecontrollercomprisestherun-timemodule(RTM)andthecongurationtool(CT).TheRTMrunsonaPLC,performingallthemainfunctionalityofreal-timecontrol,onlinelearningandcontrolperformancemonitoring.TheCT,usedonapersonalcomputer(PC)duringtheinitialcongurationphase,simpliesthecongurationprocedurebyprovidingguidanceanddefaultparametervalues.Theoutlineofthepaperisasfollows:Section2presentsanoverviewoftheRTMstructureanddescribesitsmostimportantmodules;Section3givesabriefdescriptionoftheCT;andnally,Section4describestheapplicationofthecontrollertoapilotplantwhereitisusedforcontrolofthepressuredifferenceonahydraulicvalveinavalvetestapparatus.2.Run-TimeModuleTheRTMoftheASPECTcontrollercomprisesasetofmodules,linkedintheformofamulti-agentsystem.Fig.1showsanoverviewoftheRTManditsmainmodules:thesignalpre-processingagent(SPA),theonlinelearningagent(OLA),themodelinformationagent(MIA),thecontrolalgorithmagent(CAA),thecontrolperformancemonitor(CPM),andtheoperationsupervisor(OS).2.1.Multi-facetedmodel(MFM)TheASPECTcontrollerisbasedonthemulti-facetedmodelconceptproposedbyStephanopoulus,Henning,andLeone(1990)andincorporatesseveralmodelformsrequiredbytheCAAandtheOLA.Specically,theMFMincludesasetoflocalrst-andsecond-orderlocallearningapproach(Murray-Smith&Johansen,1997,p.188).Themeasurementdataareprocessedbatch-wise.Additionalstepsareperformedbeforeandafteridenticationinordertoimprovethereliabilityofmodelling,comparedtoadaptivemethodsthatuserecursiveidenticationcontinuously(Hagglund&As-trom,2000).Thenonlinearmodelcomprisesasetoflocallow-orderlinearmodels,eachofwhichisvalidoveraspeciedoperatingregion.Theactivelocalmodel(s)isselectedusingaconguredschedulingvariable.Thecontrollerisspecicallydesignedforsingle-input,single-outputprocessesthatmayincludeameasureddis-turbanceusedforfeed-forward.Additionally,theapplicationrangeofthecontrollerdependsontheselectedcontrolalgorithm.Amodularstructureofthecontrollerpermitsuseofarangeofcontrolalgorithmsthataremostsuitablefordifferentprocesses.ThegPractice()discrete-timelinearmodelswithtimedelayandoffset,ARTICLEINPRESSS.Gerksicetal./ControlEngineerinwhicharespeciedbyagivenschedulingvariables(k).Themodelequationofrstorderlocalmodelsisyk1C0a1;jykb1;jukC0dujc1;jvkC0dvjrj,(1)whilethemodelequationofsecondordermodelsisyk1C0a1;jykC0a2;jykC01b1;jukC0dujb2;jukC01C0dujc1;jvkC0dvjc2;jvkC01C0dvjrj,2wherekisthediscretetimeindex,jisthenumberofthelocalmodel,y(k)istheprocessoutputsignal,u(k)istheprocessinputsignal,v(k)istheoptionalmeasureddisturbancesignal(MD),duisthedelayinthemodelbranchfromutoy,dvisthedelayinthemodelbranchfromvtoy,andai,j,bi,j,ci,jandrjaretheparametersofthejthlocalmodel.ThesetoflocalmodelscanbeinterpretedasaTakagiSugenofuzzymodel,whichinthecaseofasecondordermodelcanbeexpressedintheFig.1.Run-timemodulegPractice()3followingform:yk1C0Xmj1bjka1;jykC0Xmj1bjka2;jykC01Xmj1bjkb1;jukC0dujXmj1bjkb2;jukC01C0dujXmj1bjkc1;jnkC0dnjXmj1bjkc2;jnkC01C0dnjXmj1bjkrj,3wherebj(k)isthevalueofthemembershipfunctionofthejthlocalmodelatthecurrentvalueoftheschedulingvariables(k).Normalisedtriangularmembershipfunc-tionsareused,asillustratedinFig.2.overview.ARTICLEINPRESSTheschedulingvariables(k)iscalculatedusingcoefcientskr,ky,ku,andkv,usingtheweightedsumskkrrkkyykkuukC01kvvk.(4)Thecoefcientsareconguredbytheengineeraccord-ingtothenatureoftheprocessnonlinearity.2.2.OnlineLearningAgent(OLA)TheOLAscansthebufferofrecentreal-timesignals,preparedbytheSPA,andestimatestheparametersofthelocalmodelsthatareexcitedbythesignals.ThemostrecentlyderivedparametersaresubmittedtotheMIAonlywhentheypassthevericationtestandareprovedtobebetterthantheexistingset.TheOLAisinvokedupondemandfromtheOSorautonomously,whenanintervaloftheprocesssignalswithsufcientexcitationisavailableforprocessing.Itprocessesthesignalsbatch-wiseandusingthelocallearningapproach.Anadvantageofthebatch-wiseconceptisthatthedecisiononwhethertoadaptthemodelisnotperformedinreal-timebutfollowingadelaythatallowsforinspectionoftheidenticationresultbeforeitisapplied.Thus,bettermeansforcontroloverdataselectionisprovided.Aproblemofdistributionofthecomputationtimerequiredforidenticationappearswithbatch-wiseprocessingofdata(opposedtotheonlinerecursiveprocessingthatistypicallyusedinadaptivecontrollers).Thisproblemisresolvedusingamulti-taskingoperationsystem.SincetheOLAtypicallyrequiresconsiderablyFig.2.FuzzymembershipfunctionsoflocalmodelsintheMFM.S.Gerksicetal./ControlEngineerin4morecomputationthanthereal-timecontrolalgorithm,itrunsinthebackgroundasalow-prioritytask.Thefollowingprocedure,illustratedinFig.3,isexecutedwhentheOLAisinvoked.2.2.1.CopysignalbufferThebufferofthereal-timesignalsismaintainedbytheSPA.WhentheOLAisinvoked,therelevantsectionofthebufferiscopiedforfurtherprocessing.2.2.2.ExcitationcheckAquickexcitationcheckisperformedatthestart,sothatprocessingofthesignalsisperformedonlywhentheycontainexcitation.Ifthestandarddeviationsofthesignalsr(k),y(k),u(k),andv(k)intheactivebufferarebelowtheirthresholds,theexecutioniscancelled.2.2.3.CopyactiveMFMfromMIATheonlinelearningprocedurealwayscomparesthenewlyidentiedlocalmodelswiththeprevioussetofparameters.Therefore,theactiveMFMiscopiedfromtheMIAwhereitisstored.Adefaultsetofmodelparametersisusedforthelocalmodelsthathavenotyetbeenidentied(seeSection2.3).2.2.4.SelectlocalmodelsAlocalmodelisselectedifthesumofitsmembershipfunctionsbj(k)overtheactivebuffernormalisedbytheactivebufferlengthexceedsagiventhreshold.Onlytheselectedlocalmodelsareincludedinfurtherprocessing.2.2.5.IdentificationThelocalmodelparametersareidentiedusingthefuzzyinstrumentalvariables(FIV)identicationmethoddevelopedbyBlazicetal.(2003).Itisanextensionofthelinearinstrumentalvariablesidenticationprocedure(Ljung,1987)forthespeciedMFM,basedonthelocallearningapproach(Murray-Smith&Johansen,1997).Thelocallearningapproachisbasedontheassumptionthattheparametersofalllocalmodelswillnotbeestimatedin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2 臘八粥 說課稿-2024-2025學(xué)年統(tǒng)編版語文六年級(jí)下冊(cè)001
- 2024年五年級(jí)數(shù)學(xué)上冊(cè) 3 小數(shù)除法7課時(shí) 循環(huán)小數(shù)配套說課稿 新人教版
- 2025工礦產(chǎn)品買賣合同
- 2025同村土地承包合同
- 2025學(xué)校食品供貨合同簡單版樣本
- 2025版集體勞動(dòng)合同范文
- 2025加盟經(jīng)銷合同范文
- 6-2《插秧歌》說課稿及反思 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊(cè)
- 2023九年級(jí)數(shù)學(xué)上冊(cè) 第2章 一元二次方程2.2 一元二次方程的解法2.2.3 因式分解法第2課時(shí) 選擇合適的方法解一元二次方程說課稿 (新版)湘教版
- 軟膜天花施工方案
- 甲狀腺乳腺外科ERAS實(shí)施流程(模板)
- 2025屆高考語文復(fù)習(xí):小說人物+課件
- 村委會(huì)2025年工作總結(jié)及2025年工作計(jì)劃
- GB/T 19411-2024除濕機(jī)
- 欠薪證明協(xié)議書(2篇)
- 注射泵操作使用課件
- 自愿參加活動(dòng)免責(zé)申明
- 2024年全國新高考1卷(新課標(biāo)Ⅰ)數(shù)學(xué)試卷(含答案詳解)
- 人教版高中生物學(xué)新舊教材知識(shí)差異盤點(diǎn)
- 字體設(shè)計(jì)(上海出版印刷高等專科學(xué)校) 知到智慧樹網(wǎng)課答案
- 大連高新區(qū)整體發(fā)展戰(zhàn)略規(guī)劃(產(chǎn)業(yè)及功能布局)
評(píng)論
0/150
提交評(píng)論