




已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
附錄A:英文原文LeastsquaresphaseunwrappinginwaveletdomainAbstract:Leastsquaresphaseunwrappingisoneoftherobusttechniquesusedtosolvetwo-dimensionalphaseunwrappingproblems.However,owingtoitssparsestructure,theconvergencerateisveryslow,andsomepracticalmethodshavebeenappliedtoimprovethiscondition.Inthispaper,anewmethodforsolvingtheleastsquarestwo-dimensionalphaseunwrappingproblemispresented.Thistechniqueisbasedonthemultiresolutionrepresentationofalinearsystemusingthediscretewavelettransform.Byapplyingthewavelettransform,theoriginalsystemisdecomposedintoitscoarseandfineresolutionlevels.Fastconvergenceinseparatecoarseresolutionlevelsmakestheoverallsystemconvergenceveryfast.1introductionTwo-dimensionalphaseunwrappingisanimportantprocessingstepinsomecoherentimagingapplications,suchassyntheticapertureradarinterferometry(InSAR)andmagneticresonanceimaging(MRI).Intheseprocesses,three-dimensionalinformationofthemeasuredobjectscanbeextractedfromthephaseofthesensedsignals,However,theobseryedphasedataarewrappedprincipalvalues,whicharerestrictedina2modulus,andtheymustbeunwrappedtotheirtrueabsolutephasevalues.Thisisthetaskofthephaseunwrapping,especiallyfortwo-dimensionalproblems.Thebasicassumptionofthegeneralphaseunwrappingmethodsisthatthediscretederivativesoftheunwrappedphaseatallgridpointsarelessthaninabsolutevalue.Withthisassumptionsatisfied,theabsolutephasecanbereconstructedperfectlybyintegratingthepartialderivativesofthewrappedphasedata.Inthegeneralcase,however,itisnotpossibletorecoverunambiguouslytheabsolutephasefromthemeasuredwrappedphasewhichisusuallycorruptedbynoiseoraliasingeffectssuchasshadow,layover,etc.Insuchcases,thebasicassumptionisviolatedandthesimpleintegrationprocedurecannotbeappliedowingtothephaseinconsistenciescausedbythecontaminations.AfterGoldstein-etalintroducedtheconceptofresiduesinthetwo-dimensionalphaseunwrappingproblemofInSAR,manyphaseunwrappingapproachestocopewiththisproblemhavebeeninvestigated.Path-following(orintegration-based)methodsandleastsquaresmethodsarethemostrepresentativetwobasicclassesinthisfield.TherehavealsobeensomeotherapproachessuchasGreenmethods,Bayesianregularizationmethods,imageprocessing-basedmethods,andmodel-basedmethods.Leastsquaresphaseunwrapping,establishedbyGhigliaandRomero,isoneofthemostrobusttechniquestosolvethetwo-dimensionalphaseunwrappingproblem.Thismethodobtainsanunwrappedsolutionbyminimizingthedifferencesbetweenthepartialderivativesofthewrappedphasedataandtheunwrappedsolution.Leastsquaresmethodisdividedintounweightedandweightedleastsquaresphaseunwrapping.Toisolatethephaseinconsistencies,aweightedleastsquaresmethodshouldbeused,whichdepressesthecontaminationeffectsbyusingtheweightingarrays.GreenmethodsandBayesianmethodsarealsobasedontheleastsquaresscheme.Butthesemethodsaredifferentfromthoseof,intheconceptofphaseinconsistencytreatment.Thus,thispaperconcernsonlytheleastsquaresphaseunwrappingproblemofGhigliascategory.Theleastsquaresmethodiswell-definedmathematicallyandequivalenttothesolutionofPoissonspartialdifferentialequation,whichcanbeexpressedasasparselinearequation.anteriormethodisusuallyusedtosolvethislargelinearequation.However,alargecomputationtimeisrequiredandthereforeimprovingtheconvergencerateisaveryimportanttaskwhenusingthismethod.Somenumericalalgorithmshavebeenappliedtothisproblemtoimproveconvergenceconditions.Anapproachforfastconvergenceofasparselinearequationistotransfertheoriginalequationsystemintoanewsystemwithlargersupports.Multiresolutionorhierarchicalrepresentationconceptshaveoftenbeenusedforthispurpose.Recently,wavelettransformhasbeeninvestigateddeeplyinscienceandengineeringfieldsasasophisticatedtoolforthemultiresolutionanalysisofsignalsandsystems.Itdecomposesasignalspaceintoitslow-resolutionsubspaceandthecomplementarydetailsubspaces.Inourmethod,thediscretewavelettransformisappliedtothelinearsystemofleastsquaresphaseunwrappingproblemtorepresenttheoriginalsysteminseparatemultiresolutionspaces.Inthisnewtransferredsystem,abetterconvergenceconditioncanbeachieved.Thismethodwasbrieflyintroducedinoutpreviouswork,wheretheproposedmethodwasappliedonlytotheunweightedproblem,Inthispaper,thisnewmethodisextendedtotheweightedleastsquaresproblem.Also,afulldescriptionoftheproposedmethodisgivenhere.2Weightedleastsquaresphaseunwrapping:areviewLeastsquaresphaseobtainsanunwrappedsolutionbyminimizingthe2L-normbetweenthediscretepartialderivativesofthewrappedphasedataandthoseoftheunwrappedsolutionfunction.Giventhewrappedphase,ijonanMNrectangulargrid(01iM,01jN),thepartialderivativesofthewrappedphasearedefinedas,1,xijijijW,1,yijijijW(1)WhereWisthewrappingoperatorthatwrapsthephaseintotheinterval,.Thedifferencesbetweenthepartialderivativesofthesolution,ijandthosein(1)canbeminimizedintheweightedleastsquaressense,bydifferentiatingthesum22,1,1,xxyyijijijijijijijijijijww(2)Withrespectto,ijandsettingtheresulttozero.In(2),thegradientweights,xijwand,yijw,areusedtopreventsomephasevaluescorruptedbynoiseoraliasingfromdegradingtheunwrapping,andaredefinedby22,1,min,xijijijwww,22,1,min,yijijijwww,01ijw(3)Theweightedleastsquaresphaseunwrappingproblemistofindthesolution,ijthatminimizesthesumof(2).Theinitialweightarray,ijwisuser-definedandsomemethodsfordefiningtheseweightsarepresentedin1,11.Whenalltheweights,1ijw,theaboveequationistheunweightedphaseunwrappingproblem.Sinceweightarrayisrelatedtotheexactitudeoftheresultantunwrappedsolution,itmustbedefinedproperly.Inthispaper,however,itisassumedthattheweightarrayisdefinedalreadyforthegivenphasedataandhowtodefineitisnotcoveredhere.Onlytheconvergenceratesissueoftheweightedleastsquaresphaseunwrappingproblemisconsideredhere.Theleastsquaressolutiontothisproblemyieldsthefollowingequation:,1,1,1,1,1,1,xxyyijijijijijijijijijijijijijwwww(4)Where,ijistheweightedphaseLaplaciandefinedby,1,1,1,1xxxxxxxxijijijijijijijijijwwww(5)Theunwrappedsolution,ijisobtainedbyiterativelysolvingthefollowingequation,1,1,1,1,1,1,1,1/xxyyxxyyijijijijijijijijijijijijijijwwwwwwww(6)Equation(4)istheweightedanddiscreteversionofthePoissonspartialdifferentialequation(PDE),2.Byconcatenatingallthenodalvariables,ijintoMN1onecolumnvector,theaboveequationisexpressedasalinearsystemA(7)WherethesystemmatrixAisofsizeKK(K=MN)andisacolumnvectorof,ij,Thatis,thesolutionoftheleastsquaresphaseunwrappingproblemcanbeobtainedbysolvingthislinearsystem,andforgivenAand,whicharedefinedfromtheweightarray,xijwandthemeasuredwrappedphase,ijtheunwrappedphasehastheuniquesolution1A,ButsinceAisaverylargematrix,thedirectinverseoperationispracticallyimpossible.ThestructureofthesystemmatrixAisverysparseandmostoftheoff-diagonalelementsarezero,whichisevidentfrom(4).DirectmethodsbasedonthefastFouriertransform(FFT)orthediscretecosinetransform(DCT)canbeappliedtosolvetheunweightedphaseunwrappingproblem.However,intheweightedcase,iterativemethodsshouldbeadopted.TheclassicaliterativemethodforsolvingthelinearsystemistheGauss-Seidelrelaxation,whichsolves(6)bysimpleiterationuntilitconverges.However,thismethodisnotpracticalowingtoitsextremelyslowconvergence,whichiscausedbythesparsecharacteristicsofthesystemmatrixA.Somenumericalalgorithmssuchaspreconditionedconjugategradient(PCG),ormultigridmethodwereappliedtoimplementtheweightedleastsquaresphaseunwrapping.ThePCGmethodconvergesrapidlyonunweightedphaseunwrappingproblemsorweightedproblemsthatdonothavelargephasediscontinuities.However,ondatawithlargediscontinuities,itrequiresmanyiterationstoconverge.ThemultigridmethodisanefficientalgorithmtosolvealinearsystemandperformsmuchbetterthantheGauss-SeidelmethodandthePCGmethodinsolvingtheleastsquaresphaseunwrappingproblem.However,inthewe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 六一活動(dòng)超市活動(dòng)方案
- 六一游園活動(dòng)活動(dòng)方案
- 六一甜品diy活動(dòng)方案
- 六一美德少年活動(dòng)方案
- 六一讀書活動(dòng)方案
- 六一車位營銷活動(dòng)方案
- 六一雪糕接龍活動(dòng)方案
- 六周年蛋糕活動(dòng)方案
- 六年級(jí)學(xué)校美德活動(dòng)方案
- 藥學(xué)選拔考試試題及答案
- 幼兒園課程游戲化實(shí)施方案(精選五篇)
- DBJ51∕T 153-2020 四川省附著式腳手架安全技術(shù)標(biāo)準(zhǔn)
- 安全生產(chǎn)三字經(jīng)
- 二次供水工程技術(shù)規(guī)程(CJJ140—2010 )
- (高清版)建筑防護(hù)欄桿技術(shù)標(biāo)準(zhǔn)JGJ_T 470-2019
- 整車數(shù)據(jù)展示,汽車設(shè)計(jì)資料
- 加芯攪拌樁技術(shù)規(guī)程 YB-2007
- 中華口腔醫(yī)學(xué)會(huì)修復(fù)專委會(huì)??茣?huì)員入會(huì)申請(qǐng)表
- 高支模專項(xiàng)施工方案(專家論證通過
- 電力電纜尼龍12護(hù)套擠制工藝的探討
- 制漿造紙行業(yè)工藝流程
評(píng)論
0/150
提交評(píng)論