




已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
GJournalofMechanicalScienceandTechnology21(2007)789798JournalofMechanicalScienceandTechnologyMicroGeneticAlgorithmBasedOptimalGatePositioninginInjectionMoldingDesignJongsooLee*,JonghunKimSchoolofMechanicalEngineeringYonseiUniversity,Seoul120-749Korea(ManuscriptReceivedDecember12,2006;RevisedMarch26,2007;AcceptedMarch26,2007)-AbstractThepaperdealswiththeoptimizationofrunnersystemininjectionmoldingdesign.Thedesignobjectiveistolocategatepositionsbyminimizingbothmaximuminjectionpressureattheinjectionportandmaximumpressuredifferenceamongallthegatesonaproductwithconstraintsonshearstressand/orweld-line.Theanalysisoffillingprocessisconductedbyafiniteelementbasedprogramforpolymerflow.Microgeneticalgorithm(mGA)isusedasaglobaloptimizationtoolduetothenatureofinherentnonlinearlityinflowanalysis.Fourdifferentdesignapplicationsininjectionmoldsareexploredtoexaminetheproposeddesignstrategies.ThepapershowstheeffectivenessofmGAinthecontextofoptimizationofrunnersystemininjectionmoldingdesign.GKeywords:Microgeneticalgorithm;Designoptimization;Fillinginjectionmold-1.IntroductionInjectionmoldingprocesshasbeenrecognizedasoneofthemostefficientmanufacturingtechnologiessincehighperformancepolymermaterialscanbeutilizedtoaccuratelymanufactureaproductwithcomplicatedshape(Chiang,etal.,1991;ChangandYang,2001;Himasekhar,etal.,1992;KwonandPark,2004).Also,thedemandoninjectionmoldedproductssuchasfromconventionalplasticgoodstomicroopticaldevicesisbeingdramaticallyincreasedovertherecentyears(Piotter,etal.,2001;Kang,etal.,2000).Ingeneral,theinjectionmoldprocessisinitiatedbythefillingstagewherethepolymermaterialsfillintoacavityundertheinjectiontemperature.Afterthecavityiscompletelyfilled,thepost-fillingstage,thatis,thepackingstageisconductedtobeadditionallyfilledwiththehighpressurepolymer,therebyresultingintheavoidanceofmaterialshrinkage.Subsequently,thecoolingstageisrequiredforamoldedproducttobeejectedwithoutanydeformation.Itisimportanttoaccommodatethemoldingconditionsinthefillingstagesinceitisthefirststageintheoverallinjectionmoldingdesign(ZhouandD.Li,2001).Afterthat,onecansuccess-fullyexpectmoreimprovedmoldingconditionsduringpost-fillingstagessuchaspacking,coolingstages.Thepaperdealswithoptimalconditionsofthefillinginjectionmoldingdesigninwhichtheflowpatternandpressureforthepolymermaterialstobefilledthroughgatesofarunnerareofsignificant.Thatis,oneofdesignrequirementsaresuchthatwhenthepolymercomesintoacavitythroughanumberofgateslocatedatdifferentpositions,pressurelevelsonthesurfaceofaproductshouldbeasuniformaspossible.Suchdesigncanbeperformedthroughtheintelligentgatepositioningtogeneratethemore*Correspondingauthor.Tel.:+82221234474;Fax.:+8223622736E-mailaddress:jleejyonsei.ac.kr790JongsooLeeandJonghunKim/JournalofMechanicalScienceandTechnology21(2007)740749uniformdistributionofinjectionpressureovertheproductsurface.TherehavebeenanumberofstudiesofoptimalgatelocationinthecontextofCAEfillinginjectionmoldingdesignproblemswherevariouskindsofoptimizerhavebeenemployedtoconductdesignoptimization(Kimetal.,1996;Young,1994;Pan-delidisandZou,2004;Lin,2001;LiandShen,1995).Thepaperexploresthedesignofinjectionmoldsystemusingmicrogeneticalgorithm(mGA).Ge-neticalgorithm(conventionalGA)isbasedontheDarwinstheoryofthesurvivalofthefittest,andadoptstheconceptofnaturalevolution;thecompetitivedesignswithmorefitaresurvivedbyselection,andthenewdesignsarecreatedbycrossoverandmutation(Lee,1996;LeeandHajela,1996).AconventionalGAworkswithamultiplenumberofdesignsinapopulation.Handlingwithsuchdesignsresultsinincreasingahigherprobabilityoflocatingaglobaloptimumaswellasmultiplelocaloptima.GAisalsoadvantageouswhenthedesignproblemisrepresentedbyamixtureofinteger/dis-creteandcontinuousdesignvariables.Nevertheless,itrequiresexpensivecomputationalcostsespeciallywhencombiningwithfiniteelementbasedCAEanalysistools.AconventionalGAdeterminesthepopulationsizedependinguponthestringlengthofachromosomethatisacodedvalueofasetofdesignvariables.Themaindifferencebetweenaconven-tionalGAandmGAresidesonthepopulationsize.ThepopulationsizeinmGAisbasedonGoldbergsconceptsuchthatEvolutionprocessispossiblewithsmallpopulationstoreducethecostoffitnessfunctionevaluation(Goldberg,1988).ThisimpliesthatmGAemploysafewnumberofpopulationsforGAevolutionregardlessofthenumberofdesignvariablesandthecomplexityofdesignparameters(Krishnakumar,1989;DennisandDulikravich,2001).Thepaperdiscussesthedesignrequirementsoffillinginjectionmoldoptimizationtoconstructtheproperobjectivefunctionsanddesignconstraints.Fourdifferentdesignapplicationsininjectionmoldsareexploredtoexaminetheproposeddesignstrategies.ThepapershowstheeffectivenessofmGAinthecontextofoptimizationofrunnersystemininjectionmoldingdesign.2.MoldflowanalysisTheflowofapolymerininjectionmoldingprocessobeysthefollowinggoverningequations:22()()0ppSSxxyywwwwwwww(1)222()pxyTTTTCktxyzUQQKJwwwwwwww(2)where,220hzSdzK.Intheaboveequations,pisaflowpressure,Tisatemperatureofpolymer,andtisdenotedastime.ParametersK,J,andkareviscosity,shearrateandthermalconductivity,respectively(Lee,2003).Itisassumedthatpolymerisanon-compactionsubstanceinthefillinganalysis.TheflowanalysisinthepresentstudyisconductedbyComputerAidedPlasticsApplication(CAPA)(Koo,2003),afiniteelementbasedcommercialcodeforpolymerflowofinjectionmolding.Therunnersystemininjectionmoldcoversthepassageofmoltenpolymerfrominjectionporttogates.Thepresentstudydevelopstwodifferentrunnersystemswhereacoldsystemrequiresthechangeinpolymertemperature,andahotsystemkeepitunchangedwhiletheflowpassesthroughtherunner.ForthehotrunnersystemhasageometricallyconsistentthicknessduetotheconstanttemperatureasshowninFig.1a.However,theCAEresultofacoldrunnersystemdependsonthethicknessandshapeTable1.Ten-bartrussdesignresults.microGAconventionalGACase1Case2Case3Case1Case2Case3Reference20X17.868.157.858.157.307.817.90X20.400.830.450.10X38.387.978.378.10X45.053.833.893.973.274.163.90X50.120.950.550.10X60.400.820.300.10X76.415.675.875.846.746.305.80X85.236.295.525.685.065.265.51X93.833.855.055.072.893.863.68OptimalareaX100.5001.160.420.14Optimalweight1599158715881593159015851499#offunctionevaluations575405423025335788946949773533JongsooLeeandJonghunKim/JournalofMechanicalScienceandTechnology21(2007)789798791(a)Hotrunnersystem(b)ColdrunnersystemFig.1.Modelingofrunnersystem.shapeofarunner.ThetypicalillustrationofthegeometricmodelinacoldrunnersystemisshowninFig.1bwheretherunnerthicknessischangedaccordingtothetemperaturegradient.3.Moldingdesignrequirements3.1ObjectivefunctionsOneofthemostsignificantfactorsconsideredintheinjectionmoldingdesignisaflowpattern,whichimpliesthatabalancedflowshouldbemaintainedwhileapolymerarrivesateachpartofadesignproduct.Oncetheimprovementonflowbalanceisobtained,theflowofmoltenpolymersmoothesandthemaximuminjectionpressureisdecreasedwiththesameoratleastevenlydistributedinjectionpressurelevelateachgate.Inacasewherethecertainpartofaproductwithinthemoldisfilledupearlierthanotherparts,eachpartwouldfallintoover-packingandunder-packingsituationsduringthefillingprocessofapolymerintomold.Suchproblemfurtherevokesamalformationliketwistingandbending,resultingfromthedifferenceincontractionrateduringthecourseofcooling-off.Thedifferenceinpressuretriggerstheflowofpolymerduringthefillingprocess,inwhichthemaximuminjectionpressureisdetectedattheinjectionportofpolymer.Thepolymeralwaysflowsfromhigh-pressureregiontolow-pressureone.Whenaflowpatternimproves,theflowofpolymergetssmootherwiththemaximuminjectionpressuredecreased.However,theflowinstabilitysometimeshappens,therebyrequiringahigherpressuretofillup.Thatis,themaximuminjectionpressureneedstobereducedinordertoimprovetheflowinstability.Thepressuregap(i.e.,thehighestandlowestpressurevalues)amongallofgatesisalsotakenasanotherobjectivefunctiontodeterminewhetherthewholemoldisbeingfilledatonce.Mostcommonlyaccepteddesignstrategytoimprovetheflowpatternistheadjustmentofgatelocation.Thepresentstudycontrolstheflowpatternbydevelopingtheoptimalgatepositioningproblemswithproperobjectivefunction(s)anddesigncons-traints.Objectivefunctionsforinjectionmoldingdesignareconsideredasbothmaximuminjectionpressure(MIP)andmaximumpressuredifference(MPD).Itshouldbenotedthatthemaximuminjectionpressureiscalculatedattheinjectionportandthemaximumpressuredifferenceisanumericaldifferencebetweenthehighestandlowestvaluesofpressureamongallofgates.Theaforementionedstatementscouldbeinterpretedasamultiobjectivedesignproblem,hencethepresentstudysimplyemploysaweightingmethodasfollows:*()()()MIPxMPDxFxMIPMPDDE(3)where,DandEareweightingfactorsasD+E=1,andxisasetofdesignvariableswhichareCartesiancoordinatesofgatesonaproduct.Eachcomponentintheaboveequationisnormalizedbyoptimalsingle-objectivefunctionvalue,(i.e.,MIP*,MPD*).Itismentionedthatthenumberofgatesisconsideredasaproblemparameterinthestudy.3.1ConstraintsWeld-linesareeasilydetectedwhenmorethantwoflowfrontshavingdifferenttemperaturevaluesmeetduringthefillingprocess.Theweld-lineisoneoftheweakestpointsinmoldedproduct;itisvery792JongsooLeeandJonghunKim/JournalofMechanicalScienceandTechnology21(2007)740749vulnerabletoashockandsubsequentlycausesexternaldefectsofaveryglossypolymer.Theweld-lineshouldbemovedintoalessweakregionbyadjustingthewidthofaproduct,thesizeand/orshapeofgatesandrunners,andthepositionofgates,etc.Thepresentstudyconsidersthepositionofaweld-lineasaconstraintinoptimalgatepositioningofmolddesign.Onceadesignerspecifiesareaswhereweld-linesshouldnotbegenerated,allofthefiniteelementnodesinsuchareasareconstrainednottoformtheweld-lines.Shearstressisdefinedasashearforceimposedonthewallofamoldbytheshearflowofapolymer.Themagnitudeofshearstressisproportionaltothepressuregradientofeachposition.Ingeneral,theshearstressiszeroatthecenterofamoldedproduct,andreachesamaximumvalueonthewall.Highshearstresstriggersthemoleculecultivationonthesurfaceofamoldedproduct.Flowinstabilitysuchasmeltfracturehasacloserelationshipwiththeshearstress.Theclearsurfaceofamoldedproductcanbeobtainedbyreducingthemagnitudeofshearstress.Thatis,shearstressshouldbeminimizedduringthemoldfillingprocessinordertoimprovethequalityofamoldedproduct,particularlyonitssurface.Maximumallowableshearstressdependsonthekindsofpolymer,andisgenerallytakenas1%oftensilestrengthofapolymer.Shearstressaffectingthequalityofendproductisconsideredasanotherconstraint.3.3FormulationofoptimizationproblemThestatementofamolddesignoptimizationproblemcanbewrittenasfollows:Find12(,)(,),(,),.,(,)Nxijkxijkxijkxijk(4)tominimize*()()()MIPxMPDxFxMIPMPDDE(5)subjecttoshearstress(i,j,k)shearstressallowable(6)weld-line(i,j,k)=designatedarea(s)only(7)where,lowerupperxxxddAsetofdesignvariables,xareCartesiancoordi-nates(i,j,k)ofgatesonthesurfaceofamoldedproduct,whereNisthenumberofgates.Atraditionalweighted-summethodinthecontextofmultiob-jectiveoptimizationisemployedbyusingtwowei-Fig.2.MicroGAprocess.ghtingfactorsofDandE,whereD+E=1.Multi-objectivefunctionsconsideredinthepresentstudyaremaximuminjectionpressure(MIP)measuredattheinjectionportandmaximumpressuredifferen
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 干休所升旗儀式活動方案
- 工地風(fēng)險排查活動方案
- 帶學(xué)生開展助學(xué)活動方案
- 山東文藝新春活動方案
- 小班幼兒六一節(jié)活動方案
- 小視屏征集活動方案
- 小學(xué)美德少年活動方案
- 少先隊(duì)工作展示活動方案
- 工會活動噴繪活動方案
- 小班方隊(duì)展示活動方案
- 2023年特種設(shè)備監(jiān)督管理題庫
- 農(nóng)業(yè)工程概論智慧樹知到期末考試答案章節(jié)答案2024年昆明理工大學(xué)
- 數(shù)智化碳管理與應(yīng)用智慧樹知到期末考試答案章節(jié)答案2024年浙江農(nóng)林大學(xué)
- 南陽醫(yī)專三年制專科衛(wèi)生信息管理專業(yè)人才培養(yǎng)方案
- 《模擬電子技術(shù)》教學(xué)教案(共42單元)247-1
- 車間成本管理與控制課件
- 質(zhì)量管理體系之?dāng)?shù)字化轉(zhuǎn)型與智能化升級
- 《電力機(jī)車制動機(jī)》 課件 項(xiàng)目三 CCB-II制動系統(tǒng)
- 消控證(中級)考試練習(xí)題集
- 中醫(yī)面診-(重要)
- 《動物飼料配方技術(shù)》課件
評論
0/150
提交評論