2019高考數(shù)學(xué)導(dǎo)數(shù)題型歸納文科_第1頁
2019高考數(shù)學(xué)導(dǎo)數(shù)題型歸納文科_第2頁
2019高考數(shù)學(xué)導(dǎo)數(shù)題型歸納文科_第3頁
2019高考數(shù)學(xué)導(dǎo)數(shù)題型歸納文科_第4頁
2019高考數(shù)學(xué)導(dǎo)數(shù)題型歸納文科_第5頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、(二次函數(shù)區(qū)間最值的例子)第三種:構(gòu)造函數(shù)求最值題型特征:恒成立恒成立;從而轉(zhuǎn)化為第一、二種題型例3;已知函數(shù)圖象上一點處的切線斜率為,()求的值;()當(dāng)時,求的值域;()當(dāng)時,不等式恒成立,求實數(shù)t的取值范圍。二、題型一:已知函數(shù)在某個區(qū)間上的單調(diào)性求參數(shù)的范圍解法1:轉(zhuǎn)化為在給定區(qū)間上恒成立, 回歸基礎(chǔ)題型解法2:利用子區(qū)間(即子集思想);首先求出函數(shù)的單調(diào)增或減區(qū)間,然后讓所給區(qū)間是求的增或減區(qū)間的子集; 做題時一定要看清楚“在(m,n)上是減函數(shù)”與“函數(shù)的單調(diào)減區(qū)間是(a,b)”,要弄清楚兩句話的區(qū)別:前者是后者的子集例4:已知,函數(shù)()如果函數(shù)是偶函數(shù),求的極大值和極小值;()如果

2、函數(shù)是上的單調(diào)函數(shù),求的取值范圍例5、已知函數(shù) (I)求的單調(diào)區(qū)間; (II)若在0,1上單調(diào)遞增,求a的取值范圍。子集思想三、題型二:根的個數(shù)問題題1函數(shù)f(x)與g(x)(或與x軸)的交點=即方程根的個數(shù)問題解題步驟第一步:畫出兩個圖像即“穿線圖”(即解導(dǎo)數(shù)不等式)和“趨勢圖”即三次函數(shù)的大致趨勢“是先增后減再增”還是“先減后增再減”;第二步:由趨勢圖結(jié)合交點個數(shù)或根的個數(shù)寫不等式(組);主要看極大值和極小值與0的關(guān)系;第三步:解不等式(組)即可;例6、已知函數(shù),且在區(qū)間上為增函數(shù)(1) 求實數(shù)的取值范圍;(2) 若函數(shù)與的圖象有三個不同的交點,求實數(shù)的取值范圍根的個數(shù)知道,部分根可求或已

3、知。例7、已知函數(shù)(1)若是的極值點且的圖像過原點,求的極值;(2)若,在(1)的條件下,是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖像恒有含的三個不同交點?若存在,求出實數(shù)的取值范圍;否則說明理由。高1考1資1源2網(wǎng)題2:切線的條數(shù)問題=以切點為未知數(shù)的方程的根的個數(shù)例7、已知函數(shù)在點處取得極小值4,使其導(dǎo)數(shù)的的取值范圍為,求:(1)的解析式;(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍題3:已知在給定區(qū)間上的極值點個數(shù)則有導(dǎo)函數(shù)=0的根的個數(shù)解法:根分布或判別式法例8、例9、已知函數(shù),(1)求的單調(diào)區(qū)間;(2)令x4f(x)(xR)有且僅有3個極值點,求a的取值范圍其它例題:1、(最值問題與

4、主元變更法的例子).已知定義在上的函數(shù)在區(qū)間上的最大值是5,最小值是11.()求函數(shù)的解析式;()若時,恒成立,求實數(shù)的取值范圍.2、(根分布與線性規(guī)劃例子)(1)已知函數(shù)() 若函數(shù)在時有極值且在函數(shù)圖象上的點處的切線與直線平行, 求的解析式;() 當(dāng)在取得極大值且在取得極小值時, 設(shè)點所在平面區(qū)域為S, 經(jīng)過原點的直線L將S分為面積比為1:3的兩部分, 求直線L的方程.解: (). 由, 函數(shù)在時有極值 , 又 在處的切線與直線平行, 故 . 7分 () 解法一: 由 及在取得極大值且在取得極小值, 即 令, 則 故點所在平面區(qū)域S為如圖ABC, 易得, , , , , 同時DE為ABC的

5、中位線, 所求一條直線L的方程為: 另一種情況設(shè)不垂直于x軸的直線L也將S分為面積比為1:3的兩部分, 設(shè)直線L方程為,它與AC,BC分別交于F、G, 則 , 由 得點F的橫坐標(biāo)為: 由 得點G的橫坐標(biāo)為: 即 解得: 或 (舍去) 故這時直線方程為: 綜上,所求直線方程為: 或 .12分() 解法二: 由 及在取得極大值且在取得極小值, 即 令, 則 故點所在平面區(qū)域S為如圖ABC, 易得, , , , , 同時DE為ABC的中位線, 所求一條直線L的方程為: 另一種情況由于直線BO方程為: , 設(shè)直線BO與AC交于H , 由 得直線L與AC交點為: , , 所求直線方程為: 或 3、(根的

6、個數(shù)問題)已知函數(shù)的圖象如圖所示。()求的值;()若函數(shù)的圖象在點處的切線方程為,求函數(shù)f ( x )的解析式;()若方程有三個不同的根,求實數(shù)a的取值范圍。解:由題知:()由圖可知函數(shù)f ( x )的圖像過點( 0 , 3 ),且= 0得 ()依題意= 3 且f ( 2 ) = 5解得a = 1 , b = 6 所以f ( x ) = x3 6x2 + 9x + 3()依題意f ( x ) = ax3 + bx2 ( 3a + 2b )x + 3 ( a0 )= 3ax2 + 2bx 3a 2b 由= 0b = 9a 若方程f ( x ) = 8a有三個不同的根,當(dāng)且僅當(dāng) 滿足f ( 5 )8af ( 1 ) 由 得 25a + 38a7a + 3a3 所以 當(dāng)a3時,方程f ( x ) = 8a有三個不同的根。 12分4、(根的個數(shù)問題)已知函數(shù) (1)若函數(shù)在處取得極值,且,求的值及的單調(diào)區(qū)間; (2)若,討論曲線與的交點個數(shù) 解:(1)2分令得令得的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為5分(2)由題得即令6分令得或7分當(dāng)即時此時,有一個交點;9分當(dāng)即時, ,當(dāng)即時,有一個交點;當(dāng)即時,有兩個交點; 當(dāng)時,有一個交點13分綜上可知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論