版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高考三角函數(shù)1.特殊角的三角函數(shù)值:sin= 0cos= 1tan= 0sin3=cos3=tan3=sin=cos=tan=1sin6=cos6=tan6=sin9=1cos9=0tan9無(wú)意義2角度制與弧度制的互化: 36918273603.弧長(zhǎng)及扇形面積公式弧長(zhǎng)公式: 扇形面積公式:S=-是圓心角且為弧度制。 r-是扇形半徑4.任意角的三角函數(shù)設(shè)是一個(gè)任意角,它的終邊上一點(diǎn)p(x,y), r=(1)正弦sin= 余弦cos= 正切tan=(2)各象限的符號(hào): + -xy+O +xyO + +yOsin cos tan5.同角三角函數(shù)的基本關(guān)系:(1)平方關(guān)系:sin2+ cos2=1。(
2、2)商數(shù)關(guān)系:=tan ()6. 誘導(dǎo)公式:,口訣:函數(shù)名稱(chēng)不變,符號(hào)看象限,口訣:正弦與余弦互換,符號(hào)看象限7正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì)倍角公式sin2=2sincoscos2=cos2-sin2=2cos2-1=1-2sin2兩角和與差的三角函數(shù)關(guān)系sin()=sincoscossincos()=coscossinsin8、三角函數(shù)公式:降冪公式: 升冪公式 : 1+cos= cos21-cos= sin29正弦定理:.余弦定理:;.三角形面積定理.1直角三角形中各元素間的關(guān)系:如圖,在ABC中,C90,ABc,ACb,BCa。(1)三邊之間的關(guān)系:a2b2c2。(勾股定理)
3、(2)銳角之間的關(guān)系:AB90;(3)邊角之間的關(guān)系:(銳角三角函數(shù)定義)sinAcosB,cosAsinB,tanA。2斜三角形中各元素間的關(guān)系:在ABC中,A、B、C為其內(nèi)角,a、b、c分別表示A、B、C的對(duì)邊。(1)三角形內(nèi)角和:ABC。(2)正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。(R為外接圓半徑)(3)余弦定理:三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。3三角形的面積公式:(1)ahabhbchc(ha、hb、hc分別表示a、b、c上的高);(2)ab
4、sinCbcsinAacsinB;4解三角形:由三角形的六個(gè)元素(即三條邊和三個(gè)內(nèi)角)中的三個(gè)元素(其中至少有一個(gè)是邊)求其他未知元素的問(wèn)題叫做解三角形廣義地,這里所說(shuō)的元素還可以包括三角形的高、中線、角平分線以及內(nèi)切圓半徑、外接圓半徑、面積等等解三角形的問(wèn)題一般可分為下面兩種情形:若給出的三角形是直角三角形,則稱(chēng)為解直角三角形;若給出的三角形是斜三角形,則稱(chēng)為解斜三角形解斜三角形的主要依據(jù)是:設(shè)ABC的三邊為a、b、c,對(duì)應(yīng)的三個(gè)角為A、B、C。(1)角與角關(guān)系:A+B+C = ;(2)邊與邊關(guān)系:a + b c,b + c a,c + a b,ab c,bc b;(3)邊與角關(guān)系:正弦定理
5、 (R為外接圓半徑);余弦定理 c2 = a2+b22bccosC,b2 = a2+c22accosB,a2 = b2+c22bccosA;它們的變形形式有:a = 2R sinA,。5三角形中的三角變換三角形中的三角變換,除了應(yīng)用上述公式和上述變換方法外,還要注意三角形自身的特點(diǎn)。(1)角的變換因?yàn)樵贏BC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;四【典例解析】題型1:正、余弦定理(2009岳陽(yáng)一中第四次月考).已知中,則( ) A. B C D 或答案 C例1(1)在中,已知,cm,解三角形;(2)在中,已知cm,cm,解三
6、角形(角度精確到,邊長(zhǎng)精確到1cm)。解析:(1)根據(jù)三角形內(nèi)角和定理,;根據(jù)正弦定理,;根據(jù)正弦定理,(2)根據(jù)正弦定理,因?yàn)?,所以,或?dāng)時(shí), ,當(dāng)時(shí), ,點(diǎn)評(píng):應(yīng)用正弦定理時(shí)(1)應(yīng)注意已知兩邊和其中一邊的對(duì)角解三角形時(shí),可能有兩解的情形;(2)對(duì)于解三角形中的復(fù)雜運(yùn)算可使用計(jì)算器例2(1)在ABC中,已知,求b及A;(2)在ABC中,已知,解三角形解析:(1)=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即(2)由余弦定理的推論得:cos;cos;點(diǎn)評(píng):應(yīng)用余弦定理時(shí)解法二應(yīng)注意確定A的取值范圍。題型2:三角形面積例3在中,求的值和的面積。解法一:先解
7、三角方程,求出角A的值。 又, , 。 解法二:由計(jì)算它的對(duì)偶關(guān)系式的值。 , +得。 得。從而。以下解法略去。點(diǎn)評(píng):本小題主要考查三角恒等變形、三角形面積公式等基本知識(shí),著重?cái)?shù)學(xué)考查運(yùn)算能力,是一道三角的基礎(chǔ)試題。兩種解法比較起來(lái),你認(rèn)為哪一種解法比較簡(jiǎn)單呢?例4(2009湖南卷文)在銳角中,則的值等于 ,的取值范圍為 . 答案 2 解析 設(shè)由正弦定理得由銳角得,又,故,例5(2009浙江理)(本題滿分14分)在中,角所對(duì)的邊分別為,且滿足, (I)求的面積; (II)若,求的值解 (1)因?yàn)?,又由得?(2)對(duì)于,又,或,由余弦定理得, 例6(2009全國(guó)卷理)在中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)
8、分別為、,已知,且 求b 分析::此題事實(shí)上比較簡(jiǎn)單,但考生反應(yīng)不知從何入手.對(duì)已知條件(1)左側(cè)是二次的右側(cè)是一次的,學(xué)生總感覺(jué)用余弦定理不好處理,而對(duì)已知條件(2) 過(guò)多的關(guān)注兩角和與差的正弦公式,甚至有的學(xué)生還想用現(xiàn)在已經(jīng)不再考的積化和差,導(dǎo)致找不到突破口而失分.解法一:在中則由正弦定理及余弦定理有:化簡(jiǎn)并整理得:.又由已知.解得. 解法二:由余弦定理得: .又,.所以又,即由正弦定理得,故 由,解得.評(píng)析:從08年高考考綱中就明確提出要加強(qiáng)對(duì)正余弦定理的考查.在備考中應(yīng)注意總結(jié)、提高自己對(duì)問(wèn)題的分析和解決能力及對(duì)知識(shí)的靈活運(yùn)用能力.另外提醒:兩綱中明確不再考的知識(shí)和方法了解就行,不必強(qiáng)
9、化訓(xùn)練題型4:三角形中求值問(wèn)題例7的三個(gè)內(nèi)角為,求當(dāng)A為何值時(shí),取得最大值,并求出這個(gè)最大值。解析:由A+B+C=,得=,所以有cos =sin。cosA+2cos =cosA+2sin =12sin2 + 2sin=2(sin )2+ ;當(dāng)sin = ,即A=時(shí), cosA+2cos取得最大值為。點(diǎn)評(píng):運(yùn)用三角恒等式簡(jiǎn)化三角因式最終轉(zhuǎn)化為關(guān)于一個(gè)角的三角函數(shù)的形式,通過(guò)三角函數(shù)的性質(zhì)求得結(jié)果。例8(2009浙江文)(本題滿分14分)在中,角所對(duì)的邊分別為,且滿足, (I)求的面積; (II)若,求的值解() 又,而,所以,所以的面積為:()由()知,而,所以所以點(diǎn)評(píng):本小題主要考察三角函數(shù)概
10、念、同角三角函數(shù)的關(guān)系、兩角和與差的三角函數(shù)的公式以及倍角公式,考察應(yīng)用、分析和計(jì)算能力題型5:三角形中的三角恒等變換問(wèn)題例9在ABC中,a、b、c分別是A、B、C的對(duì)邊長(zhǎng),已知a、b、c成等比數(shù)列,且a2c2=acbc,求A的大小及的值。分析:因給出的是a、b、c之間的等量關(guān)系,要求A,需找A與三邊的關(guān)系,故可用余弦定理。由b2=ac可變形為=a,再用正弦定理可求的值。解法一:a、b、c成等比數(shù)列,b2=ac。又a2c2=acbc,b2+c2a2=bc。在ABC中,由余弦定理得:cosA=,A=60。在ABC中,由正弦定理得sinB=,b2=ac,A=60,=sin60=。解法二:在ABC中
11、,由面積公式得bcsinA=acsinB。b2=ac,A=60,bcsinA=b2sinB。=sinA=。評(píng)述:解三角形時(shí),找三邊一角之間的關(guān)系常用余弦定理,找兩邊兩角之間的關(guān)系常用正弦定理。例10在ABC中,已知A、B、C成等差數(shù)列,求的值。解析:因?yàn)锳、B、C成等差數(shù)列,又ABC180,所以AC120,從而60,故tan.由兩角和的正切公式,得。所以。點(diǎn)評(píng):在三角函數(shù)求值問(wèn)題中的解題思路,一般是運(yùn)用基本公式,將未知角變換為已知角求解,同時(shí)結(jié)合三角變換公式的逆用。題型6:正、余弦定理判斷三角形形狀例11在ABC中,若2cosBsinAsinC,則ABC的形狀一定是( )A.等腰直角三角形B.
12、直角三角形C.等腰三角形D.等邊三角形答案:C解析:2sinAcosBsin(AB)sin(AB)又2sinAcosBsinC,sin(AB)0,AB點(diǎn)評(píng):本題考查了三角形的基本性質(zhì),要求通過(guò)觀察、分析、判斷明確解題思路和變形方向,通暢解題途徑例12(2009四川卷文)在中,為銳角,角所對(duì)的邊分別為,且(I)求的值;(II)若,求的值。 解(I)為銳角, (II)由(I)知, 由得,即又 21.(2009四川卷文)在中,為銳角,角所對(duì)的邊分別為,且(I)求的值;(II)若,求的值。 解(I)為銳角, (II)由(I)知, 由得,即又 點(diǎn)評(píng):三角函數(shù)有著廣泛的應(yīng)用,本題就是一個(gè)典型的范例。通過(guò)引入角度,將圖形的語(yǔ)言轉(zhuǎn)化為三角的符號(hào)語(yǔ)言,再通過(guò)局部的換元,又將問(wèn)題轉(zhuǎn)化為我們熟知的函數(shù),這些解題思維的拐點(diǎn),你能否很快的想到呢?五【思維總結(jié)】1解斜三角形的常規(guī)思維方法是:(1)已知兩角和一邊(如A、B、C),由A+B+C = 求C,由正弦定理求a、b;(2)已知兩邊和夾角(如a、b、c),應(yīng)用余弦定理求c邊;再應(yīng)用正弦定理先求較短邊所對(duì)的角,然后利用A+B+C = ,求另一角;(3)已知兩邊和其中一邊的對(duì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年跨境電商知識(shí)產(chǎn)權(quán)保護(hù)合同規(guī)范2篇
- 2025版協(xié)議離婚辦理指南與離婚證獲取時(shí)效標(biāo)準(zhǔn)解讀3篇
- 2025版影視基地租賃合同匯編4篇
- 2025版司機(jī)雇傭服務(wù)質(zhì)量評(píng)價(jià)與獎(jiǎng)懲合同3篇
- 二零二五年度門(mén)面租賃合同環(huán)保要求與責(zé)任4篇
- 二零二五年度2025版國(guó)有企業(yè)設(shè)備租賃合同范本4篇
- 終止2025年度勞動(dòng)合同并規(guī)定經(jīng)濟(jì)補(bǔ)償辦法3篇
- 2025年度離婚后財(cái)產(chǎn)分配與債務(wù)承擔(dān)協(xié)議3篇
- 2025年消防防排煙系統(tǒng)施工與消防安全風(fēng)險(xiǎn)管理合同3篇
- 2024離婚后雙方權(quán)益保障與責(zé)任劃分合同
- 中國(guó)末端執(zhí)行器(靈巧手)行業(yè)市場(chǎng)發(fā)展態(tài)勢(shì)及前景戰(zhàn)略研判報(bào)告
- 北京離婚協(xié)議書(shū)(2篇)(2篇)
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說(shuō)明書(shū)200
- 2024年藥品質(zhì)量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數(shù)學(xué)真題試卷(含答案)
- 內(nèi)審檢查表完整版本
- 安全生產(chǎn)管理問(wèn)題與對(duì)策探討
- 2024屆浙江寧波鎮(zhèn)海區(qū)中考生物全真模擬試題含解析
- 人教版八年級(jí)物理下冊(cè) (功)教育教學(xué)課件
- 中藥的性能四氣五味課件
評(píng)論
0/150
提交評(píng)論