用對偶單純形法求解線性規(guī)劃問題_第1頁
用對偶單純形法求解線性規(guī)劃問題_第2頁
用對偶單純形法求解線性規(guī)劃問題_第3頁
用對偶單純形法求解線性規(guī)劃問題_第4頁
用對偶單純形法求解線性規(guī)劃問題_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、用對偶單純形法求解線性規(guī)劃問題The final edition was revised on December 14th, 2020.例47用對偶單純形法求解線性規(guī)劃問題.Min z =5xi+3x, -2 xi + 3x? M63 xi - 6 x. M4Xjo (j=l,2)解:將問題轉(zhuǎn)化為Max z 二一5 xi - 3 x、 2 xi 一 3x 分 + X3 二63xi+ 6 x2 + X*-4XjMO (j=l,2. 3,4)其中,X3| x為松弛變量,可以作為初始基變量,單純形表見表4-17表4-17例4-7單純形表G6-3-40Cb迭代0 次XbbXxx2XsX,0X,-62-

2、3100X5-4-3601 匕-亦0-5-300G迭次XBbX:Xox3x.-3X.2-2/31-1/300X:-161021-Z = c 廠6-70-10在表4-17中,b=16v0,而yO,故該問題無可行解.注意:對偶單純形法仍是求解原問題,它是適用于當原問題無可行基,且所有檢驗數(shù)均為負的情況.若原問題既無可行基,而檢驗數(shù)中又有小于0的情況.只能用人工變量法求解. 在計算機求解時,只有人工變量法,沒有對偶單純形法.3.對偶問題的最優(yōu)解由對偶理論可知,在原問題和對偶問題的最優(yōu)解之間存在著密切的關系,可以根 據(jù)這些關系,從求解原問題的最優(yōu)單純形表中,得到對偶問題的最優(yōu)解.(1)設原問題(P)為

3、Min z=CXAX=b* X0則標準型(LP)為Max z=CXAX=bX0其對偶線性規(guī)劃(D)為Max z=b1YAX=bX0用對偶單純形法求解(LP),得最優(yōu)基B和最優(yōu)單純形表T (B)。對于(LP)來說,當 j二n+i 時,有 Pj=-ei, cj=O從而,在最優(yōu)單純形表T (B)中,對于檢驗數(shù),有(on+1, on+2on+m) = (cn+i, cn+2., Cn+m) -CbB1 (Pn+l,Pn+2.,Pn+m) =- CbB1 (-1)于是,Y*二(cm+1, on+2on+m) T o可見,在(LP)的最優(yōu)單純形表 中,剩余變量對應的檢驗數(shù)就是對偶問題的最優(yōu)解。同時,在最優(yōu)

4、單純形表T (B)中,由于剩余變量對應的系數(shù)所以B1 = (-y n+l,y n+2yn+m)例48求下列線性規(guī)劃問題的對偶問題的最優(yōu)解。Min z =6xi+8x, xi + 2x2 M203xi+2x分 M50XjMO (j=l,2)解:將問題轉(zhuǎn)化為Max z =-6xi-8x.(-xi _ 2x2 + X3二20 一3 XI - 2x 分 + X| =50Xjo (j二 1,2, 3,4)用對偶單純形法求解如表表4-18例4-8單純形表G6-800Cs迭代0次XbbX:x=XsX,-8X.5/201-3/41/4_6Xs15101/2-1/2-Z = c丿-亦-1100031在引入松弛變

5、量化為標準型之后,約束等式兩側(cè)同乘-1,能夠立即得到檢驗數(shù) 全部非正的原規(guī)劃基本解,可以直接建立初始對偶單純形表進行求解,非常方 便。對于有些線性規(guī)劃模型,如果在開始求解時不能很快使所有檢驗數(shù)非正,最 好還是采用單純形法求解。因為,這樣可以免去為使檢驗數(shù)全部非正而作的許 多工作。從這個意義上看,可以說,對偶單純形法是單純形法的一個補充。除 此之外,在對線性規(guī)劃進行靈敏度分析中有時也要用到對偶單純形方法,可以 簡化計算。例4-9 求解線性規(guī)劃問題:Min/= 2x1 + 3x2 + 4x3.x + 2x2 +x3 M32x1 - x2 + x3 M 4xl , x2 , x3 M 0標準化:Max z = 2x1- 3x2 4x3-xl-2x2-x3+x4= -3-2x 1+x2-3x3+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論