




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第二章矩陣及其運算 13. 已知線性變換: , 求從變量x1, x2, x3到變量y1, y2, y3的線性變換. 解 由已知: , 故 , . 3. 已知兩個線性變換 , , 求從z1, z2, z3到x1, x2, x3的線性變換. 解 由已知 , 所以有. 2. 設(shè), , 求3AB-2A及ATB. 解 , . 1. 計算下列乘積: (1); 解 . (2); 解 =(13+22+31)=(10). (3); 解 . (4) ; 解 . (5); 解 =(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33x3) . 4. 設(shè), , 問:
2、(1)AB=BA嗎? 解 ABBA. 因為, , 所以ABBA. (2)(A+B)2=A2+2AB+B2嗎? 解 (A+B)2A2+2AB+B2. 因為, , 但 , 所以(A+B)2A2+2AB+B2. (3)(A+B)(A-B)=A2-B2嗎? 解 (A+B)(A-B)A2-B2. 因為, , , 而 , 故(A+B)(A-B)A2-B2. 5. 舉反列說明下列命題是錯誤的: (1)若A2=0, 則A=0; 解 取, 則A2=0, 但A0. (2)若A2=A, 則A=0或A=E; 解 取, 則A2=A, 但A0且AE. (3)若AX=AY, 且A0, 則X=Y . 解 取 , , , 則A
3、X=AY, 且A0, 但XY . 6. 設(shè), 求A2, A3, , Ak. 解 , , , . 7. 設(shè), 求Ak . 解 首先觀察 , , , , , . 用數(shù)學(xué)歸納法證明: 當k=2時, 顯然成立. 假設(shè)k時成立,則k+1時, , 由數(shù)學(xué)歸納法原理知: . 8. 設(shè)A, B為n階矩陣,且A為對稱矩陣,證明BTAB也是對稱矩陣. 證明 因為AT=A, 所以 (BTAB)T=BT(BTA)T=BTATB=BTAB, 從而BTAB是對稱矩陣. 9. 設(shè)A, B都是n階對稱矩陣,證明AB是對稱矩陣的充分必要條件是AB=BA. 證明 充分性: 因為AT=A, BT=B, 且AB=BA, 所以 (AB
4、)T=(BA)T=ATBT=AB, 即AB是對稱矩陣. 必要性: 因為AT=A, BT=B, 且(AB)T=AB, 所以 AB=(AB)T=BTAT=BA. 10. 求下列矩陣的逆矩陣: (1); 解 . |A|=1, 故A-1存在. 因為 , 故 . (2); 解 . |A|=10, 故A-1存在. 因為 , 所以 . (3); 解 . |A|=20, 故A-1存在. 因為 , 所以 . (4)(a1a2 an 0) . 解 , 由對角矩陣的性質(zhì)知 . 11. 解下列矩陣方程: (1); 解 . (2); 解 . (3); 解 . (4). 解 . 12. 利用逆矩陣解下列線性方程組: (1
5、); 解 方程組可表示為 , 故 , 從而有 . (2). 解 方程組可表示為 , 故 , 故有 . 14. 設(shè)Ak=O (k為正整數(shù)), 證明(E-A)-1=E+A+A2+ +Ak-1. 證明 因為Ak=O , 所以E-Ak=E. 又因為 E-Ak=(E-A)(E+A+A2+ +Ak-1), 所以 (E-A)(E+A+A2+ +Ak-1)=E, 由定理2推論知(E-A)可逆, 且 (E-A)-1=E+A+A2+ +Ak-1. 證明 一方面, 有E=(E-A)-1(E-A). 另一方面, 由Ak=O, 有 E=(E-A)+(A-A2)+A2- -Ak-1+(Ak-1-Ak) =(E+A+A2+
6、 +A k-1)(E-A), 故 (E-A)-1(E-A)=(E+A+A2+ +Ak-1)(E-A),兩端同時右乘(E-A)-1, 就有 (E-A)-1(E-A)=E+A+A2+ +Ak-1. 15. 設(shè)方陣A滿足A2-A-2E=O, 證明A及A+2E都可逆, 并求A-1及(A+2E)-1. 證明 由A2-A-2E=O得 A2-A=2E, 即A(A-E)=2E, 或 , 由定理2推論知A可逆, 且. 由A2-A-2E=O得 A2-A-6E=-4E, 即(A+2E)(A-3E)=-4E, 或 由定理2推論知(A+2E)可逆, 且. 證明 由A2-A-2E=O得A2-A=2E, 兩端同時取行列式得
7、 |A2-A|=2, 即 |A|A-E|=2, 故 |A|0, 所以A可逆, 而A+2E=A2, |A+2E|=|A2|=|A|20, 故A+2E也可逆.由 A2-A-2E=O A(A-E)=2E A-1A(A-E)=2A-1E, 又由 A2-A-2E=O(A+2E)A-3(A+2E)=-4E (A+2E)(A-3E)=-4 E, 所以 (A+2E)-1(A+2E)(A-3E)=-4(A+2 E)-1, . 16. 設(shè)A為3階矩陣, , 求|(2A)-1-5A*|. 解 因為, 所以 =|-2A-1|=(-2)3|A-1|=-8|A|-1=-82=-16. 17. 設(shè)矩陣A可逆, 證明其伴隨陣
8、A*也可逆, 且(A*)-1=(A-1)*. 證明 由, 得A*=|A|A-1, 所以當A可逆時, 有 |A*|=|A|n|A-1|=|A|n-10, 從而A*也可逆. 因為A*=|A|A-1, 所以 (A*)-1=|A|-1A. 又, 所以 (A*)-1=|A|-1A=|A|-1|A|(A-1)*=(A-1)*. 18. 設(shè)n階矩陣A的伴隨矩陣為A*, 證明: (1)若|A|=0, 則|A*|=0; (2)|A*|=|A|n-1. 證明 (1)用反證法證明. 假設(shè)|A*|0, 則有A*(A*)-1=E, 由此得 A=A A*(A*)-1=|A|E(A*)-1=O , 所以A*=O, 這與|A
9、*|0矛盾,故當|A|=0時, 有|A*|=0. (2)由于, 則AA*=|A|E, 取行列式得到 |A|A*|=|A|n. 若|A|0, 則|A*|=|A|n-1; 若|A|=0, 由(1)知|A*|=0, 此時命題也成立. 因此|A*|=|A|n-1. 19. 設(shè), AB=A+2B, 求B. 解 由AB=A+2E可得(A-2E)B=A, 故 . 20. 設(shè), 且AB+E=A2+B, 求B. 解 由AB+E=A2+B得 (A-E)B=A2-E, 即 (A-E)B=(A-E)(A+E). 因為, 所以(A-E)可逆, 從而 . 21. 設(shè)A=diag(1, -2, 1), A*BA=2BA-8
10、E, 求B. 解 由A*BA=2BA-8E得 (A*-2E)BA=-8E, B=-8(A*-2E)-1A-1 =-8A(A*-2E)-1 =-8(AA*-2A)-1 =-8(|A|E-2A)-1 =-8(-2E-2A)-1 =4(E+A)-1 =4diag(2, -1, 2)-1 =2diag(1, -2, 1). 22. 已知矩陣A的伴隨陣, 且ABA-1=BA-1+3E, 求B. 解 由|A*|=|A|3=8, 得|A|=2. 由ABA-1=BA-1+3E得 AB=B+3A, B=3(A-E)-1A=3A(E-A-1)-1A . 23. 設(shè)P-1AP=L, 其中, , 求A11. 解 由P
11、-1AP=L, 得A=PLP-1, 所以A11= A=PL11P-1. |P|=3, , , 而 , 故 . 24. 設(shè)AP=PL, 其中, , 求j(A)=A8(5E-6A+A2). 解 j(L)=L8(5E-6L+L2) =diag(1,1,58)diag(5,5,5)-diag(-6,6,30)+diag(1,1,25) =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). j(A)=Pj(L)P-1 . 25. 設(shè)矩陣A、B及A+B都可逆, 證明A-1+B-1也可逆, 并求其逆陣. 證明 因為 A-1(A+B)B-1=B-1+A-1=A-1+B-1, 而A-1(A+B)B-1是三個可逆矩陣的乘積, 所以A-1(A+B)B-1可逆, 即A-1+B-1可逆. (A-1+B-1)-1=A-1(A+B)B-1-1=B(A+B)-1A. 26. 計算. 解 設(shè), , , , 則 , 而 , , 所以 , 即 . 27. 取,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 院內(nèi)美化合同協(xié)議書5篇
- 2025年榆林普通貨運從業(yè)資格證模擬考試
- 2025年大理貨運員初級考試題庫
- 2025年高中化學(xué)新教材同步 必修第一冊 第4章 第3節(jié) 第2課時 化學(xué)鍵 分子間作用力
- 107-廣播對講系統(tǒng)
- 空間環(huán)境監(jiān)測系統(tǒng)產(chǎn)業(yè)分析報告
- 個人汽車公用租賃合同范本
- 勞務(wù)派遣住宿合同范本
- 中學(xué)化學(xué)教學(xué)工作總結(jié)
- 個人自查自糾整改報告
- 2025年安徽水利水電職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫(含答案)
- 山東省青島市市北區(qū)2024-2025學(xué)年七年級上學(xué)期期末考試英語試題(含答案+解析)
- 餐飲及食品安全管理制度
- 湖北省襄陽市襄州區(qū)2024-2025學(xué)年九年級上學(xué)期期末語文試題(含答案)
- 2025年安徽電氣工程職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案1套
- 2025年房屋交易代持策劃協(xié)議書
- 課題申報參考:“四新”建設(shè)背景下教育創(chuàng)新與課程數(shù)字化實踐研究
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 高考成績證明模板
- 蝴蝶蘭PPT課件
- 賓館做房記錄表
評論
0/150
提交評論