![D101對(duì)弧長(zhǎng)和曲線積分21767PPT課件_第1頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-10/23/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d77/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d771.gif)
![D101對(duì)弧長(zhǎng)和曲線積分21767PPT課件_第2頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-10/23/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d77/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d772.gif)
![D101對(duì)弧長(zhǎng)和曲線積分21767PPT課件_第3頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-10/23/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d77/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d773.gif)
![D101對(duì)弧長(zhǎng)和曲線積分21767PPT課件_第4頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-10/23/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d77/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d774.gif)
![D101對(duì)弧長(zhǎng)和曲線積分21767PPT課件_第5頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-10/23/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d77/1bc1243e-19b3-4fa0-a1b4-76d4c63f5d775.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、AB一、對(duì)弧長(zhǎng)的曲線積分的概念與性一、對(duì)弧長(zhǎng)的曲線積分的概念與性質(zhì)質(zhì)假設(shè)曲線形細(xì)長(zhǎng)構(gòu)件在空間所占弧段為AB , 其線密度為),(zyx“大化小, 常代變, 近似和, 求極限” kkkks),(可得nk 10limM為計(jì)算此構(gòu)件的質(zhì)量,ks1kMkM),(kkk1.1.引例: 曲線形構(gòu)件的質(zhì)量采用機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第1頁(yè)/共21頁(yè)設(shè) 是空間中一條有限長(zhǎng)的光滑曲線,義在 上的一個(gè)有界函數(shù), kkkksf),(都存在,),(zyxf上對(duì)弧長(zhǎng)的曲線積分,記作szyxfd),(若通過(guò)對(duì) 的任意分割局部的任意取點(diǎn), 2. .定義定義是定),(zyxf下列“乘積和式極限”則稱(chēng)此極限為函數(shù)在
2、曲線或第一類(lèi)曲線積分.),(zyxf稱(chēng)為被積函數(shù), 稱(chēng)為積分弧段 .曲線形構(gòu)件的質(zhì)量szyxMd),(nk 10limks1kMkM),(kkk和對(duì)機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第2頁(yè)/共21頁(yè)如果如果 L 是是 xoy 面上的曲線弧面上的曲線弧 ,kknkksf),(lim10Lsyxfd),(如果 L 是閉曲線 , 則記為.d),(Lsyxf則定義對(duì)弧長(zhǎng)的曲線積分為機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 思考:(1) 若在 L 上 f (x, y)1, ?d 表示什么問(wèn)Ls(2) 定積分是否可看作對(duì)弧長(zhǎng)曲線積分的特例 ? 否! 對(duì)弧長(zhǎng)的曲線積分要求 ds 0 ,但定積分中dx 可能為負(fù).
3、第3頁(yè)/共21頁(yè)3. 性質(zhì)性質(zhì)szyxfd ),() 1 (szyxfkd),()2((k 為常數(shù))szyxfd),()3( 由 組成) 21,sd)4( l 為曲線弧 的長(zhǎng)度),(zyxgszyxfd),(szyxgd),(szyxfkd),(l21d),(d),(szyxfszyxf機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第4頁(yè)/共21頁(yè)tttttfsdyxfLd)()()(, )(),(22二、對(duì)弧長(zhǎng)的曲線積分的計(jì)算二、對(duì)弧長(zhǎng)的曲線積分的計(jì)算法法基本思路:計(jì)算定積分轉(zhuǎn) 化定理:),(yxf設(shè)且)()(tty上的連續(xù)函數(shù),證:是定義在光滑曲線弧則曲線積分),(:txL,d),(存在Lsyxf求
4、曲線積分(自學(xué)) 機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第5頁(yè)/共21頁(yè)如果曲線如果曲線 L 的方程的方程為為),()(bxaxy則有Lsyxfd),(如果方程為極坐標(biāo)形式:),()(: rrL則syxfLd),()sin)(,cos)(rrf推廣: 設(shè)空間曲線弧的參數(shù)方程為)()(, )(),(:ttztytx則szyxfd),(ttttd)()()(222xx d)(12d)()(22rrbaxxf) )(,()(),(, )(tttf機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第6頁(yè)/共21頁(yè)例例1. 計(jì)計(jì)算算,dLsx其中 L 是拋物線2xy 與點(diǎn) B (1,1) 之間的一段弧 . 解:)10(
5、:2xxyLLsxd10 xxxd)2(12xxxd4110210232)41 (121x)155(121上點(diǎn) O (0,0)1Lxy2xy o) 1 , 1 (B機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第7頁(yè)/共21頁(yè)例2. 計(jì)算,dLsx其中 L 是:221xy上點(diǎn) A (0,1)到點(diǎn) 之間的一段弧 . 1122(,)B例3. 計(jì)算22d ,xyLes其中 L 是:4,0,ra所圍平面區(qū)域的邊界,( r, ) 為極坐標(biāo)。例4. 計(jì)算4433()d ,Lxys其中 L 是:222333xya的一周。第8頁(yè)/共21頁(yè)例例5. 計(jì)算計(jì)算,dsxIL其中L為雙紐線)0()()(222222ayxayx
6、解: 在極坐標(biāo)系下它在第一象限部分為)40(2cos:1 arL利用對(duì)稱(chēng)性 , 得sxILd414022d)()(cos4rrr402dcos4a222a,2cos:22arLyox機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第9頁(yè)/共21頁(yè)例例6. 計(jì)算曲線積分計(jì)算曲線積分 ,d)(222szyx其中為螺旋的一段弧.解: szyxd)(22220222)()sin()cos(t ktatattkakad202222202322223tktaka)43(3222222kakatktatad)cos()sin(222)20(,sin,costtkztaytax線機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第10
7、頁(yè)/共21頁(yè)例例7. 計(jì)算計(jì)算,d2sx其中為球面 2222azyx被平面 所截的圓周. 0zyx解: 由對(duì)稱(chēng)性可知sx d2szyxsxd)(31d2222sa d312aa2312332asy d2sz d2機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第11頁(yè)/共21頁(yè)d d s例例8. 計(jì)算計(jì)算,d)(222szyxI其中為球面22yx 解: , 11)(:24122121zxyx:202)sin2(2)cos2(2)sin2(18d22920Id2cos221z. 1的交線與平面 zx292 z化為參數(shù)方程 21cos2x sin2y則機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第12頁(yè)/共21頁(yè)思考
8、思考: 例例5中中 改為改為0)1()1(2222zyxazyx計(jì)算?d2sx解: 令 11zZyYxX0 :2222ZYXaZYX, 則sx d2sXd) 1(2sXd2332a)131(22aasX d2sda2圓的形心在原點(diǎn), 故0XaX22, 如何機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第13頁(yè)/共21頁(yè)內(nèi)容小結(jié)內(nèi)容小結(jié)1. 定義kkknkksf),(lim10szyxfd),(2. 性質(zhì)kknkksf),(lim10Lsyxfd),(szyxgzyxfd),(),() 1 (21d),(d),(d),()2(szyxfszyxfszyxf),(21組成由ls d)3( l 曲線弧 的長(zhǎng)度
9、)Lszyxfd),(),(為常數(shù)szyxgLd),(機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第14頁(yè)/共21頁(yè)3. 計(jì)算計(jì)算 對(duì)光滑曲線弧, )( , )(, )(:ttytxLLsyxfd),( 對(duì)光滑曲線弧, )()(:bxaxyLLsyxfd),(baxxf) )(,(),()(: rrLLsyxfd),()sin)(,cos)(rrf 對(duì)光滑曲線弧tttd)()(22xx d)(12d)()(22rr)(),(ttf機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第15頁(yè)/共21頁(yè)思考與練習(xí)思考與練習(xí)1. 已知橢圓134:22yxL周長(zhǎng)為a , 求syxxyLd)432(22提示:0d2sxyL原式
10、 =syxLd)34(1222sLd12a12o22yx3利用對(duì)稱(chēng)性sxyLd2sxyLd2上sxyLd2下x2xyd1222)(2xxyd1222分析:機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第16頁(yè)/共21頁(yè)2. 設(shè)均勻螺旋形彈簧設(shè)均勻螺旋形彈簧L的方程的方程為為,sin,costaytax),20(tt kz(1) 求它關(guān)于 z 軸的轉(zhuǎn)動(dòng)慣量;zI(2) 求它的質(zhì)心 .解: 設(shè)其密度為 (常數(shù)).syxILzd)(22202atkad222222kaa(2) L的質(zhì)量smLd222ka 而sxLd22kaa20dcostt0(1)機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第17頁(yè)/共21頁(yè)syLd22kaa20dsintt0szLd22kak20dtt2222kak故重心坐標(biāo)為),0,0(k作業(yè)P131 3 (3) , (4) , (6) , (7)5 第二節(jié) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第18頁(yè)/共21頁(yè)xyo備用題備用題1. 設(shè) C 是由極坐標(biāo)系下曲線, ar 0及4所圍區(qū)域的邊界, 求seICyxd222)24(aeaa4xy 0yar 提示: 分段積分xeIaxd0d40aeaxeaxd2202機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第19頁(yè)/共21頁(yè)2. L為球?yàn)榍蛎婷?222Rzyx面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年快中子增殖堆及配套產(chǎn)品項(xiàng)目合作計(jì)劃書(shū)
- 2025年太陽(yáng)能熱發(fā)電系統(tǒng)合作協(xié)議書(shū)
- 2025年分級(jí)設(shè)備地礦勘測(cè)設(shè)備:鉆探機(jī)合作協(xié)議書(shū)
- 可穿戴設(shè)備電池壽命測(cè)試規(guī)程
- 2025年鎂質(zhì)瓷合作協(xié)議書(shū)
- 2025年治療精神障礙藥項(xiàng)目合作計(jì)劃書(shū)
- 阿凡達(dá)觀后感生態(tài)與文明的思考
- 水泥混凝土路面施工合同
- 三字經(jīng)經(jīng)典解讀與傳承
- FDU-PB-22-生命科學(xué)試劑-MCE
- 許慎《說(shuō)文解字》(全文)
- 餐飲服務(wù)食品安全監(jiān)督量化分級(jí)動(dòng)態(tài)等級(jí)評(píng)定檢查表
- 我國(guó)應(yīng)急通信保障能力評(píng)估體系探究(金)
- 井控-井口套管頭裝置⑥課件
- 病原生物與免疫學(xué)(中職)緒論P(yáng)PT課件
- 施工質(zhì)量管理體系與保證措施方案
- 變配電室受電方案
- 新起點(diǎn)小學(xué)英語(yǔ)一年級(jí)上冊(cè)單詞卡片(共23頁(yè))
- 譯林版五下英語(yǔ)1-3單元電子稿
- 墻面鋼筋網(wǎng)砂漿抹灰加固方案(共3頁(yè))
- (完整word版)蘇教版三年級(jí)數(shù)學(xué)下冊(cè)各單元教學(xué)目標(biāo)
評(píng)論
0/150
提交評(píng)論