下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、new solutions of relativistic wave equations in magnetic fie we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation,
2、which reduces eff 1 2 t c o 5 1 3 v 7 3 1 1 /0h t - p e :hv i x r anewsolutionsofrelativisticlongitudinalwaveequations elds.inmagnetic eldsandv.g.bagrov ,m.c.baldiotti ,d.m.gitman ,andi.v.shirokovinstitutodef sica,universidadedes aopaulo,c.p.66318,05315-970s aopaulo,sp,brasil(february1,2021)abstract
3、wedemonstratehowonecandescribeexplicitlythepresentarbitrarinessinsolutionsofrelativisticwaveequationsinexternalelectromagnetic eldsofspecialform.thisarbitrarinessisconnectedtotheexistenceofatransforma-tion,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepre
4、sentationstoconstructnewsetsofex-actsolutions,ly,wepresentnewsetsofstationaryandnonstationarysolutionsinmagnetic eldandinsomesuperpositionsofelectricandmagnetic elds.i.introductionrelativisticwaveequations(diracandklein-gordon)provideabasisforrelativisticquantummechanicsandquantumelectrodynamicsofsp
5、inorandscalarparticles1.inrelativisticquantummechanics,solutionsofrelativisticwaveequationsarereferredtoasone-particlewavefunctionsoffermionsandbosonsinexternalelectromagnetic elds.inquantumelectrodynamics,suchsolutionsallowthedevelopmentoftheperturbationexpansionknownasthefurrypicture,whichincorpor
6、atestheinteractionwiththeexternal eldexactly, whiletreatingtheinteractionwiththequantizedelectromagnetic eldperturbatively2.thephysicallymostimportantexactsolutionsoftheklein-gordonandthediracequationsare:anelectroninacoulomb eld,auniformmagnetic eld,the eldofaplanewave,the eldofamagneticmonopole,th
7、e eldofaplanewavecombinedwithauniformmagneticandelectric eldsparalleltothedirectionofwavepropagation,crossed elds,andsome we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbi
8、trariness is connected to the existence of a transformation, which reduces eff simpleone-dimensionalelectric elds(foracompletereviewofsolutionsofrelativisticwaveequationssee3). considering,forexample,stationarysolutionsofrelativisticwaveequations,wecanseethatinthegeneralcase,thereexistdi erentsetsof
9、stationarysolutionsforoneandthesamehamiltonian.thepossibilitytogetdi erentsetsofstationarystatesre ectstheex-istenceofanarbitrarinessinthesolutionsoftheeigenvalueproblemforahamiltonian.consideringnonstationarysolutions,wealsoencounterthepossibilityofconstructingdif-ferentcompletesetsofsuchsolutions.
10、thereisnoregularmethodofdescribingsuchanarbitrarinessexplicitly.especiallyinthepresenceofanexternal eldtheproblemappearstobenontrivial. inthepresentarticlewedemonstratehowonecandescribeexplicitlythepresentarbi-trarinessinsolutionsoftherelativisticwaveequationsforsometypesofexternalelectro-magnetic e
11、lds,namely,foruniformmagnetic eldsandcombinationofthese eldswithsomeelectric elds.thisarbitrarinessisconnectedtotheexistenceofatransformation,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepresentationstoconstructnewsetsofexactsolutions,whichmayhaveaphysic
12、alinterest.insect.iiweconsiderrelativisticwaveequationsinpureuniformmagnetic elds.herewederivearepresentationfortheexactsolutions,inwhichtheabovementionedarbitrarinessisdescribedexplicitlybyanarbitraryfunction.fromasuitablechoiceofthisfunction,wegetboththewell-knownsetofsolutionsandnewones.thissecti
13、oncontainsthemostcomplete(atthepresent)descriptionoftheproblemofauniformmagnetic eldinrelativisticquantummechanics.amongnewsetsofsolutionstherearebothstationary,gen-eralizedcoherentsolutionsandnonstationarysolutions.then,insect.iii,weconsidermorecomplicatedcon gurationsofexternalelectromagnetic elds
14、,namely,longitudinalelectro-magnetic elds.herewedescribeallthearbitrarinessinthesolutions,andonthisbasepresentvarioussetsofnewexactsolutions.insect.ivweinterprettheaboveresultsfromthepointofviewofthegeneraltheoryofdi erentialequations. ii.uniformmagneticfield a.arbitrarinessinsolutionsofrelativistic
15、waveequations. considerauniformmagnetic eldh=(0,0,h)directedalongthex3axis(h0).theelectromagneticpotentialsarechoseninthesymmetricgauge a0=a3=0,a1=1 2hx1.(2.1) wewritetheklein-gordonandthediracequationsintheform k=0,2h2k=p2 m2 0c,p=ihe we demonstrate how one can describe explicitly the present arbit
16、rariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff inthecaseoftheklein-gordonequation,theoperatorlz, lz=ihx 1 x 2,lz,p0=lz,p3=k,lz=0, 21 canbeincluded(togethe
17、rwithp0andp3)inthecompletesetofintegralsofmotion,whereasforthediracequationcase,theoperatorjz, jz=lz+h (2.3) dx1dx2=2cos , 2x2=y=ch0,dd ,x+iy= ei (x+iy+ x+i y)=(+i +2 ),2 11 12+=p2+ip1+hx ixa2=2h2 e i (x iy+ x i y)=( i +2 ),2 11(ip p)=a+=1212h2 d=h 1 p0+p3 03 2 i 21 h,21a1+i a+1 m.(2.9) we demonstra
18、te how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff theoperatorncommuteswithp0,p3,lz,plusitisanintegralofmo
19、tioninthecaseoftheklein-gordonequation.itsgeneralizationforthediracequationhastheformnd=n+1 2=x+k, 2x=+,2a1=+ ,2a2=+ , i m. onecanseethatthelatteroperatorsdonotcontainthevariable.noticethatbothoperatorslzandjzcontainvariables,.forexample, 222lz=2 2+ . 21 (2.15)(2.16) theintegrationoverkin (2.10)canb
20、ereplacedbyanintegrationover, eixy (x,y)= e i2x . (2.17) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, whic
21、h reduces eff besides,onecanwrite (,)= dxdy (x,y)(x,y)= ,d (,) = d (,).(2.18) theindependenceoftheoperators(2.15)onthevariablewillallowustoseparateexplicitlythefunctionalarbitrarinessinthesolutions(2.17),aswillbeseenbelow. b.stationarystates knownsetsofstationarysolutionsinauniformmagnetic eld(thatw
22、erefoundinthe rstworks48)areeigenfunctionsoftheoperatorsp0,p3,ninthescalarcaseandoftheoperatorsp0,p3,ndinthespinorcase.thusforscalarwavefunctionswehavetheconditions p0=hk0,p3=hk3,n=n,n=0,1,2,.,(2.19) andfordiracwavefunctionstheconditions p0=hk0,p3=hk3,nd= n 1 2x .(2.23) hereeqs.(2.19),(2.14)wereused
23、.un()arehermitfunctions; correspondingpolynomialshn()asun(x)=(2nn!theyarerelatedtothe 2exp( x2/2)hn(x)14.the function()isarbitrary.thefunctionsn(x,y)from(2.22)obeytherelations a1n=n+1a+n 1 n+1,n(x,y)= (n +1)0(x,y),(2.24) 3 0(x,y)= 2+ we demonstrate how one can describe explicitly the present arbitra
24、riness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff tn,k3(x,y)=(c1n 1(x,y),ic2n(x,y),c3n 1(x,y),ic4n(x,y).(2.26)thefunctionsn(x,y)arede nedbytherelations(2.17),(
25、2.23),whereastheconstantbispinorc(withtheelementsck)obeysanalgebraicsystemofequations ac=0,a=0k0+3k3 2n1 k33)v ,c+c=2k0(k0+m)v+v,(2.29) wherevisanarbitraryconstantbispinorandarepaulimatrices.wecanspecifyvselectingaspinintegralofmotion(see3).thestaten=0isaspecialcase.herewemustsetc1=c3=0,thatcorrespo
26、ndstothechoicevt=(0,c2),c2 meansthat3d= d.thus,forn=0,theelectronspincanonlypoint=to0.thethedirectionlatteroppositetothemagnetic eld. expressionsforn(x,y)inthesemi-momentumrepresentationcontainexplicitlyafunc-tionalarbitrariness,whichmeansthateveryenergylevelisin nitelydegenerated.letusdemandthatthe
27、scalarandspinorwavefunctionsbeeigenvectorsoftheoperatorslzandjzrespectively.accordingto(2.4)and(2.8)thatmeansthatthefunctionsn(x,y)havetoobeyanadditionalcondition a+2a2n(x,y)=sn(x,y),s=0,1,2,., lz=h(n s)=hl,l=n s,nl ,jz=h l 1 n s x iy 2x sn,s 1,a+2n,s= 2(x2+y2) =e we demonstrate how one can describe
28、 explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff belowwearegoingto ndnewsetsofsolutionsimposingcomplementaryconditionsdi erentf
29、rom(2.30).thisresultsinadi erentformforthefunction(). takingintoaccountthattheoperatorsa+2,a2areintegralsofmotion,wemayconstructstationarystates,whichareeigenvectorsofalinearcombinationa,oftheseoperators,2 a,=a2+a+22.(2.33) here,arearbitrarycomplexnumbers.onehastodistinguishherethreenonequivalentcas
30、es: if|2|2,thendonotexistanynormalizableeigenvectorsoftheoperator(2.33).wearenotgoingtoconsidersuchcase. if|2=|2,thena,is,infact,reducedtoahermitianoperator2 +a2=a2+a2,a+2=a2,=0,(2.34) whereisanarbitrarycomplexnumber. haveif|2|2,thenwithoutlossofgeneralitywecanassumethatoperatorsa,2theform a,2=a2+a+
31、2,| |=1,22 ,thena+,aarecreationandannihilationoperators,whicharerelatedtoa+222,a2byacanonicaltransformation +,a2= a,2 a2+,a+ a,2.2=a2 a,2,a+2 =1.(2.35)(2.36) considereigenvectorsoftheoperator(2.34),i.e.,az=z .this2n,z(x,y)=zn,z(x,y), equationresultsintheequationa2z()=zz()forthefunction().takinginto
32、account(2.13),onecan ndthatsolutionsofthelatterequationare z()= 2|( ) 1 2z z2(+ )| 2. thesesolutionsobeytheorthonormalityandcompletenessrelations z()z()(2.37)d=(z z), z()z()dz=( ).(2.38) theiroverlappinghastheform r,(z,z)= z()z()d=n1exp q2 q2=z 22|( ) z , z 2 2+ z .(2.39) we demonstrate how one can
33、describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff itde nesthemutualdecomposition z()= ,(z,z)dz.z()r(2.40) thecoordinater
34、epresentation(2.17)forthesolutionsunderconsiderationhastheform n,z(x,y)= 2 2 un(p1)expiq3, 4|2q3=i( )x+(+ )y(+ )x+i( )y 2z, we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this ar
35、bitrariness is connected to the existence of a transformation, which reduces eff ,s,z()= 2 2eq4us(p2),4| |2q4 2z( ) =2( )+22 theoverlapping, s,z()s,z()=( ),d2z=drezdimz.(2.47) ,;,rs(z,z),s= , s,z()s,z()d,(2.48) allowsusto ndmutualdecompositions ,s,z()= ,;,rs(z,z),ss,z(), s=0,s,z()= ,;,d2zrs(z,z),ss,
36、z().(2.49) unfortunately,theoverlapping(2.48)hasacomplicatedformviaa nitesumofhermitfunctions.insomeparticularcasesthissumcanbesimpli ed.forexample,if=,=,thentheoverlappingdoesnotdependon,andhastheform ,;,rs(z,z),s=rs,s(z,z)= z z2 exp 1 2q5=2expq5,z2( )+(z )2( )+2zz x iy z n s we demonstrate how one
37、 can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff 1n ,n,0,z(x,y)=,n,z(x,y)=( 1)n n,z(x,y)=(x+iy z)n (n+1)exp 2|z|2
38、z(x iy) 1 , s,n,s 1,z,a+2,n,s,z=z ,n,s,z+ 2 q2is,n(q) =( 1)nn z expx iy n s e i =(x iy)(x+iy z). forn=1theabovesetobeys(besides(2.24)therelations a2n,s,z=zn,s,z+ zn,s,z= (s+1) (s+1)(2.56) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equat
39、ions in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff n,s+k,z(x,y)= (s+k+1) d2z (k+s+1) k!n,s+k,z(x,y).(2.59) thatmeans,inparticular,that(2.56)isacompletesetsincetheset(2.31)iscomplete.selectingdi erentformsfo
40、rthefunction(),wecangetothersetsofstationarystatesforachargeinauniformmagnetic eld. c.nonstationarystates themostinterestingnonstationarysolutionsofrelativisticwaveequationsforachargeinauniformmagnetic eldarecoherentstates;forthe rsttimesuchsolutionswerepresentedin1013,seealso3.belowwepresentanewfam
41、ilyofnonstationarysolutions,whichincludestheabovecoherentstatesasaparticularcase. herewearegoingtouselight-conevariablesu0=x0 x3,u3=x0+x3,andthecorrespondingmomentumoperators 1 =ih p =002(p0+p3),(2.60) 0= / u0,where form 3= / u3.thentheklein-gordonoperatorcanbepresentedinthe 2 p ,k=4h 2p30 2n m 2(2.
42、61)whereasthediracequationreads(isadiracbispinor)4h 2 p= (p1,p2,0), p p30( )=2nd+m =(+)+( ), ( ), 2p3m( ),3(+)=(p)+h()=p,2p=13.(2.62)hereand3arediracmatrices3,andpprojectionoperators. ,p areinthecaseoftheuniformmagnetic eldunderconsideration,theoperatorsp30 integralsofmotion.thus,wewillconsidersolut
43、ionsthatareeigenvectorsofp3, =hp3 3 2u im 2 .(2.65) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which red
44、uces eff supposeeq.(2.63)holds,then( )canbepresentedintheform: ( )(x)=nexp i 2u0w(1 3)c(u0,x,y). (2.66) herecisanarbitraryconstantbispinor,andwisaunitarymatrix( 0isaconstantphase), w=cos i3sin,2=u0+ 0,w+w=i,(2.67) and(u0,x,y)isascalarfunction.thelatterfunctionobeystheequation(2.65).then,the(+)projec
45、tioncanbefoundfrom(2.62),(+)=(h) 1(p)+hm3( ). thus,bothinthescalarandspinorcaseswehavetosolvethesameequation(2.65). (u0,)obeystheinthesemi-momentumrepresentation,thecorrespondingfunction sameequation(2.65),where,however,onehastousetheexpression(2.14)fortheoperator 0 0n=a+1a1.therelationbetweenthefun
46、ctions(u,)and(u,)stillhastheform (2.17). letusintroducetheoperators +af,g1=fa1+ga1,f,g a+=f a+11+ga1,(2.68) wherethecomplexquantitiesfandgcandependonu0.theseoperatorsareintegralsofmotionwheneverf,gobeytheequations(bydotsabovearedenotedderivativeswithrespecttou0) if+f=0, itiseasyto nd f=f0expiu 0ig g
47、=0. (2.69)wheref0,g0aresomecomplexconstants.bearinginmindconsiderationsrelatedtothe operators(2.33),wearegoingtoconsidertwononequivalentcasesonly.the rstonecorrespondsto|f|2=|g|2orequivalentlyto|f0|2=|g0|2.inthiscasewecan,infact,onlyconsiderthehermitianoperator +a1=a1+a1, ,g=g0exp iu0,(2.70)=0eiu,00
48、=const.(2.71) thesecondcasecorrespondsto|f|2|g|2,andherewecansupposethat |f|2 |g|2=|f0|2 |g0|2=1,(2.72) withoutthelossofgenerality.inbothcasestheoperators(2.68)are,withinconstantcomplexfactors,creationandannihilationoperators. letusincludeoperators(2.71)and(2.34)(theyareintegralsofmotion)intothecomp
49、letesetofoperators.then ,a1z1,z2=z1z1,z2,a2z1,z2=z2z1,z2, zk=zk,k=1,2.(2.73) inthesemi-momentumrepresentationwe nd we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrarine
50、ss is connected to the existence of a transformation, which reduces eff wherefunctionsz1arede nedin(2.37).thecorrespondingcoordinaterepresentationreads ,0z(u,x,y)=,z12 u,=z1()z2(),0 (2.74) 2exp q6 nf,gn ;1,s;z1,z2,1 z 1f,gn,s;,z1,z2= sf,gn,s; ,1;z1,z2, a+f,ga+2, z 2 f,gn,s;,z1,z2= we demonstrate how
51、 one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff forn=s=0,wegetthecoordinaterepresentationforthesqueezedcohere
52、ntstatesintheform ;g;,0fz1,z2(u,x,y) ( 1)x+iy z1 z22m1=eis,n(p4), 2m1=(z1 z2)(x+iy) (z1 z2)(x iy)+z1z2 z1z2 2inu0, p4=|x+iy z1 z2|2,z1=z1exp( iu0),0;1,001n,s;z1,z2(u,x,y)n (2.80)= f2expq7, q7= solutionsfrom1013areparticularcasesof(2.81)forf0=1,g=0. calculatingmeanvaluesinthestates(2.78),weget1 (f g
53、)z1+(f g)z1.(2.82)p2= h2 herewehavetakenintoaccounttherelations(2.6),(2.36),(2.79),andtheorthogonalityofthestateswithrespecttotheindicesn,s.remembernowthatinclassicaltheorythe clclcorrespondingmomentap1,p2havethefollowingparametricrepresentation(withu0being theevolutionparameter,rradiusoftheclassicalorbit,andisgivenby(2.67)itiseasytoseethat(2.82)coincideswith(2.83)forz1=(/2)1/2r(f0e i 0+g0ei 0).cal- x2,we ndthattheyevolveasthecorrespondingculatingmeanvaluesofthecoordinates 2classicalquantitiesx1cl,x2cl(x1(0),x(0)arecoordinatesoftheorbitcen
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腎內(nèi)分泌科護理工作總結(jié)
- 2025年全球及中國醫(yī)用全自動凝血分析儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國企業(yè)級機械硬盤和固態(tài)硬盤行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球3D晶體管行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球立式不銹鋼離心泵行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球汽車電池試驗箱行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國游戲人工智能NPC行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球自動藥敏分析儀行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國無線藍牙肉類溫度計行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國固定橋式坐標測量機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030年中國清真食品行業(yè)運行狀況及投資發(fā)展前景預測報告
- 廣東省茂名市電白區(qū)2024-2025學年七年級上學期期末質(zhì)量監(jiān)測生物學試卷(含答案)
- 《教育強國建設(shè)規(guī)劃綱要(2024-2035年)》全文
- 山東省濱州市2024-2025學年高二上學期期末地理試題( 含答案)
- 2025年河南洛陽市孟津區(qū)引進研究生學歷人才50人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年度軍人軍事秘密保護保密協(xié)議與信息安全風險評估合同3篇
- 數(shù)字化轉(zhuǎn)型中的職業(yè)能力重構(gòu)
- 運用PDCA降低住院患者跌倒-墜床發(fā)生率
- 2025屆高中數(shù)學一輪復習專練:橢圓(含解析)
- 立春氣象與生活影響模板
- 中國服裝零售行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2025版)
評論
0/150
提交評論