New solutions of relativistic wave equations in magnetic fie_第1頁
New solutions of relativistic wave equations in magnetic fie_第2頁
免費預覽已結(jié)束,剩余26頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、new solutions of relativistic wave equations in magnetic fie we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation,

2、which reduces eff 1 2 t c o 5 1 3 v 7 3 1 1 /0h t - p e :hv i x r anewsolutionsofrelativisticlongitudinalwaveequations elds.inmagnetic eldsandv.g.bagrov ,m.c.baldiotti ,d.m.gitman ,andi.v.shirokovinstitutodef sica,universidadedes aopaulo,c.p.66318,05315-970s aopaulo,sp,brasil(february1,2021)abstract

3、wedemonstratehowonecandescribeexplicitlythepresentarbitrarinessinsolutionsofrelativisticwaveequationsinexternalelectromagnetic eldsofspecialform.thisarbitrarinessisconnectedtotheexistenceofatransforma-tion,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepre

4、sentationstoconstructnewsetsofex-actsolutions,ly,wepresentnewsetsofstationaryandnonstationarysolutionsinmagnetic eldandinsomesuperpositionsofelectricandmagnetic elds.i.introductionrelativisticwaveequations(diracandklein-gordon)provideabasisforrelativisticquantummechanicsandquantumelectrodynamicsofsp

5、inorandscalarparticles1.inrelativisticquantummechanics,solutionsofrelativisticwaveequationsarereferredtoasone-particlewavefunctionsoffermionsandbosonsinexternalelectromagnetic elds.inquantumelectrodynamics,suchsolutionsallowthedevelopmentoftheperturbationexpansionknownasthefurrypicture,whichincorpor

6、atestheinteractionwiththeexternal eldexactly, whiletreatingtheinteractionwiththequantizedelectromagnetic eldperturbatively2.thephysicallymostimportantexactsolutionsoftheklein-gordonandthediracequationsare:anelectroninacoulomb eld,auniformmagnetic eld,the eldofaplanewave,the eldofamagneticmonopole,th

7、e eldofaplanewavecombinedwithauniformmagneticandelectric eldsparalleltothedirectionofwavepropagation,crossed elds,andsome we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbi

8、trariness is connected to the existence of a transformation, which reduces eff simpleone-dimensionalelectric elds(foracompletereviewofsolutionsofrelativisticwaveequationssee3). considering,forexample,stationarysolutionsofrelativisticwaveequations,wecanseethatinthegeneralcase,thereexistdi erentsetsof

9、stationarysolutionsforoneandthesamehamiltonian.thepossibilitytogetdi erentsetsofstationarystatesre ectstheex-istenceofanarbitrarinessinthesolutionsoftheeigenvalueproblemforahamiltonian.consideringnonstationarysolutions,wealsoencounterthepossibilityofconstructingdif-ferentcompletesetsofsuchsolutions.

10、thereisnoregularmethodofdescribingsuchanarbitrarinessexplicitly.especiallyinthepresenceofanexternal eldtheproblemappearstobenontrivial. inthepresentarticlewedemonstratehowonecandescribeexplicitlythepresentarbi-trarinessinsolutionsoftherelativisticwaveequationsforsometypesofexternalelectro-magnetic e

11、lds,namely,foruniformmagnetic eldsandcombinationofthese eldswithsomeelectric elds.thisarbitrarinessisconnectedtotheexistenceofatransformation,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepresentationstoconstructnewsetsofexactsolutions,whichmayhaveaphysic

12、alinterest.insect.iiweconsiderrelativisticwaveequationsinpureuniformmagnetic elds.herewederivearepresentationfortheexactsolutions,inwhichtheabovementionedarbitrarinessisdescribedexplicitlybyanarbitraryfunction.fromasuitablechoiceofthisfunction,wegetboththewell-knownsetofsolutionsandnewones.thissecti

13、oncontainsthemostcomplete(atthepresent)descriptionoftheproblemofauniformmagnetic eldinrelativisticquantummechanics.amongnewsetsofsolutionstherearebothstationary,gen-eralizedcoherentsolutionsandnonstationarysolutions.then,insect.iii,weconsidermorecomplicatedcon gurationsofexternalelectromagnetic elds

14、,namely,longitudinalelectro-magnetic elds.herewedescribeallthearbitrarinessinthesolutions,andonthisbasepresentvarioussetsofnewexactsolutions.insect.ivweinterprettheaboveresultsfromthepointofviewofthegeneraltheoryofdi erentialequations. ii.uniformmagneticfield a.arbitrarinessinsolutionsofrelativistic

15、waveequations. considerauniformmagnetic eldh=(0,0,h)directedalongthex3axis(h0).theelectromagneticpotentialsarechoseninthesymmetricgauge a0=a3=0,a1=1 2hx1.(2.1) wewritetheklein-gordonandthediracequationsintheform k=0,2h2k=p2 m2 0c,p=ihe we demonstrate how one can describe explicitly the present arbit

16、rariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff inthecaseoftheklein-gordonequation,theoperatorlz, lz=ihx 1 x 2,lz,p0=lz,p3=k,lz=0, 21 canbeincluded(togethe

17、rwithp0andp3)inthecompletesetofintegralsofmotion,whereasforthediracequationcase,theoperatorjz, jz=lz+h (2.3) dx1dx2=2cos , 2x2=y=ch0,dd ,x+iy= ei (x+iy+ x+i y)=(+i +2 ),2 11 12+=p2+ip1+hx ixa2=2h2 e i (x iy+ x i y)=( i +2 ),2 11(ip p)=a+=1212h2 d=h 1 p0+p3 03 2 i 21 h,21a1+i a+1 m.(2.9) we demonstra

18、te how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff theoperatorncommuteswithp0,p3,lz,plusitisanintegralofmo

19、tioninthecaseoftheklein-gordonequation.itsgeneralizationforthediracequationhastheformnd=n+1 2=x+k, 2x=+,2a1=+ ,2a2=+ , i m. onecanseethatthelatteroperatorsdonotcontainthevariable.noticethatbothoperatorslzandjzcontainvariables,.forexample, 222lz=2 2+ . 21 (2.15)(2.16) theintegrationoverkin (2.10)canb

20、ereplacedbyanintegrationover, eixy (x,y)= e i2x . (2.17) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, whic

21、h reduces eff besides,onecanwrite (,)= dxdy (x,y)(x,y)= ,d (,) = d (,).(2.18) theindependenceoftheoperators(2.15)onthevariablewillallowustoseparateexplicitlythefunctionalarbitrarinessinthesolutions(2.17),aswillbeseenbelow. b.stationarystates knownsetsofstationarysolutionsinauniformmagnetic eld(thatw

22、erefoundinthe rstworks48)areeigenfunctionsoftheoperatorsp0,p3,ninthescalarcaseandoftheoperatorsp0,p3,ndinthespinorcase.thusforscalarwavefunctionswehavetheconditions p0=hk0,p3=hk3,n=n,n=0,1,2,.,(2.19) andfordiracwavefunctionstheconditions p0=hk0,p3=hk3,nd= n 1 2x .(2.23) hereeqs.(2.19),(2.14)wereused

23、.un()arehermitfunctions; correspondingpolynomialshn()asun(x)=(2nn!theyarerelatedtothe 2exp( x2/2)hn(x)14.the function()isarbitrary.thefunctionsn(x,y)from(2.22)obeytherelations a1n=n+1a+n 1 n+1,n(x,y)= (n +1)0(x,y),(2.24) 3 0(x,y)= 2+ we demonstrate how one can describe explicitly the present arbitra

24、riness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff tn,k3(x,y)=(c1n 1(x,y),ic2n(x,y),c3n 1(x,y),ic4n(x,y).(2.26)thefunctionsn(x,y)arede nedbytherelations(2.17),(

25、2.23),whereastheconstantbispinorc(withtheelementsck)obeysanalgebraicsystemofequations ac=0,a=0k0+3k3 2n1 k33)v ,c+c=2k0(k0+m)v+v,(2.29) wherevisanarbitraryconstantbispinorandarepaulimatrices.wecanspecifyvselectingaspinintegralofmotion(see3).thestaten=0isaspecialcase.herewemustsetc1=c3=0,thatcorrespo

26、ndstothechoicevt=(0,c2),c2 meansthat3d= d.thus,forn=0,theelectronspincanonlypoint=to0.thethedirectionlatteroppositetothemagnetic eld. expressionsforn(x,y)inthesemi-momentumrepresentationcontainexplicitlyafunc-tionalarbitrariness,whichmeansthateveryenergylevelisin nitelydegenerated.letusdemandthatthe

27、scalarandspinorwavefunctionsbeeigenvectorsoftheoperatorslzandjzrespectively.accordingto(2.4)and(2.8)thatmeansthatthefunctionsn(x,y)havetoobeyanadditionalcondition a+2a2n(x,y)=sn(x,y),s=0,1,2,., lz=h(n s)=hl,l=n s,nl ,jz=h l 1 n s x iy 2x sn,s 1,a+2n,s= 2(x2+y2) =e we demonstrate how one can describe

28、 explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff belowwearegoingto ndnewsetsofsolutionsimposingcomplementaryconditionsdi erentf

29、rom(2.30).thisresultsinadi erentformforthefunction(). takingintoaccountthattheoperatorsa+2,a2areintegralsofmotion,wemayconstructstationarystates,whichareeigenvectorsofalinearcombinationa,oftheseoperators,2 a,=a2+a+22.(2.33) here,arearbitrarycomplexnumbers.onehastodistinguishherethreenonequivalentcas

30、es: if|2|2,thendonotexistanynormalizableeigenvectorsoftheoperator(2.33).wearenotgoingtoconsidersuchcase. if|2=|2,thena,is,infact,reducedtoahermitianoperator2 +a2=a2+a2,a+2=a2,=0,(2.34) whereisanarbitrarycomplexnumber. haveif|2|2,thenwithoutlossofgeneralitywecanassumethatoperatorsa,2theform a,2=a2+a+

31、2,| |=1,22 ,thena+,aarecreationandannihilationoperators,whicharerelatedtoa+222,a2byacanonicaltransformation +,a2= a,2 a2+,a+ a,2.2=a2 a,2,a+2 =1.(2.35)(2.36) considereigenvectorsoftheoperator(2.34),i.e.,az=z .this2n,z(x,y)=zn,z(x,y), equationresultsintheequationa2z()=zz()forthefunction().takinginto

32、account(2.13),onecan ndthatsolutionsofthelatterequationare z()= 2|( ) 1 2z z2(+ )| 2. thesesolutionsobeytheorthonormalityandcompletenessrelations z()z()(2.37)d=(z z), z()z()dz=( ).(2.38) theiroverlappinghastheform r,(z,z)= z()z()d=n1exp q2 q2=z 22|( ) z , z 2 2+ z .(2.39) we demonstrate how one can

33、describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff itde nesthemutualdecomposition z()= ,(z,z)dz.z()r(2.40) thecoordinater

34、epresentation(2.17)forthesolutionsunderconsiderationhastheform n,z(x,y)= 2 2 un(p1)expiq3, 4|2q3=i( )x+(+ )y(+ )x+i( )y 2z, we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this ar

35、bitrariness is connected to the existence of a transformation, which reduces eff ,s,z()= 2 2eq4us(p2),4| |2q4 2z( ) =2( )+22 theoverlapping, s,z()s,z()=( ),d2z=drezdimz.(2.47) ,;,rs(z,z),s= , s,z()s,z()d,(2.48) allowsusto ndmutualdecompositions ,s,z()= ,;,rs(z,z),ss,z(), s=0,s,z()= ,;,d2zrs(z,z),ss,

36、z().(2.49) unfortunately,theoverlapping(2.48)hasacomplicatedformviaa nitesumofhermitfunctions.insomeparticularcasesthissumcanbesimpli ed.forexample,if=,=,thentheoverlappingdoesnotdependon,andhastheform ,;,rs(z,z),s=rs,s(z,z)= z z2 exp 1 2q5=2expq5,z2( )+(z )2( )+2zz x iy z n s we demonstrate how one

37、 can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff 1n ,n,0,z(x,y)=,n,z(x,y)=( 1)n n,z(x,y)=(x+iy z)n (n+1)exp 2|z|2

38、z(x iy) 1 , s,n,s 1,z,a+2,n,s,z=z ,n,s,z+ 2 q2is,n(q) =( 1)nn z expx iy n s e i =(x iy)(x+iy z). forn=1theabovesetobeys(besides(2.24)therelations a2n,s,z=zn,s,z+ zn,s,z= (s+1) (s+1)(2.56) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equat

39、ions in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff n,s+k,z(x,y)= (s+k+1) d2z (k+s+1) k!n,s+k,z(x,y).(2.59) thatmeans,inparticular,that(2.56)isacompletesetsincetheset(2.31)iscomplete.selectingdi erentformsfo

40、rthefunction(),wecangetothersetsofstationarystatesforachargeinauniformmagnetic eld. c.nonstationarystates themostinterestingnonstationarysolutionsofrelativisticwaveequationsforachargeinauniformmagnetic eldarecoherentstates;forthe rsttimesuchsolutionswerepresentedin1013,seealso3.belowwepresentanewfam

41、ilyofnonstationarysolutions,whichincludestheabovecoherentstatesasaparticularcase. herewearegoingtouselight-conevariablesu0=x0 x3,u3=x0+x3,andthecorrespondingmomentumoperators 1 =ih p =002(p0+p3),(2.60) 0= / u0,where form 3= / u3.thentheklein-gordonoperatorcanbepresentedinthe 2 p ,k=4h 2p30 2n m 2(2.

42、61)whereasthediracequationreads(isadiracbispinor)4h 2 p= (p1,p2,0), p p30( )=2nd+m =(+)+( ), ( ), 2p3m( ),3(+)=(p)+h()=p,2p=13.(2.62)hereand3arediracmatrices3,andpprojectionoperators. ,p areinthecaseoftheuniformmagnetic eldunderconsideration,theoperatorsp30 integralsofmotion.thus,wewillconsidersolut

43、ionsthatareeigenvectorsofp3, =hp3 3 2u im 2 .(2.65) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which red

44、uces eff supposeeq.(2.63)holds,then( )canbepresentedintheform: ( )(x)=nexp i 2u0w(1 3)c(u0,x,y). (2.66) herecisanarbitraryconstantbispinor,andwisaunitarymatrix( 0isaconstantphase), w=cos i3sin,2=u0+ 0,w+w=i,(2.67) and(u0,x,y)isascalarfunction.thelatterfunctionobeystheequation(2.65).then,the(+)projec

45、tioncanbefoundfrom(2.62),(+)=(h) 1(p)+hm3( ). thus,bothinthescalarandspinorcaseswehavetosolvethesameequation(2.65). (u0,)obeystheinthesemi-momentumrepresentation,thecorrespondingfunction sameequation(2.65),where,however,onehastousetheexpression(2.14)fortheoperator 0 0n=a+1a1.therelationbetweenthefun

46、ctions(u,)and(u,)stillhastheform (2.17). letusintroducetheoperators +af,g1=fa1+ga1,f,g a+=f a+11+ga1,(2.68) wherethecomplexquantitiesfandgcandependonu0.theseoperatorsareintegralsofmotionwheneverf,gobeytheequations(bydotsabovearedenotedderivativeswithrespecttou0) if+f=0, itiseasyto nd f=f0expiu 0ig g

47、=0. (2.69)wheref0,g0aresomecomplexconstants.bearinginmindconsiderationsrelatedtothe operators(2.33),wearegoingtoconsidertwononequivalentcasesonly.the rstonecorrespondsto|f|2=|g|2orequivalentlyto|f0|2=|g0|2.inthiscasewecan,infact,onlyconsiderthehermitianoperator +a1=a1+a1, ,g=g0exp iu0,(2.70)=0eiu,00

48、=const.(2.71) thesecondcasecorrespondsto|f|2|g|2,andherewecansupposethat |f|2 |g|2=|f0|2 |g0|2=1,(2.72) withoutthelossofgenerality.inbothcasestheoperators(2.68)are,withinconstantcomplexfactors,creationandannihilationoperators. letusincludeoperators(2.71)and(2.34)(theyareintegralsofmotion)intothecomp

49、letesetofoperators.then ,a1z1,z2=z1z1,z2,a2z1,z2=z2z1,z2, zk=zk,k=1,2.(2.73) inthesemi-momentumrepresentationwe nd we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrarine

50、ss is connected to the existence of a transformation, which reduces eff wherefunctionsz1arede nedin(2.37).thecorrespondingcoordinaterepresentationreads ,0z(u,x,y)=,z12 u,=z1()z2(),0 (2.74) 2exp q6 nf,gn ;1,s;z1,z2,1 z 1f,gn,s;,z1,z2= sf,gn,s; ,1;z1,z2, a+f,ga+2, z 2 f,gn,s;,z1,z2= we demonstrate how

51、 one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff forn=s=0,wegetthecoordinaterepresentationforthesqueezedcohere

52、ntstatesintheform ;g;,0fz1,z2(u,x,y) ( 1)x+iy z1 z22m1=eis,n(p4), 2m1=(z1 z2)(x+iy) (z1 z2)(x iy)+z1z2 z1z2 2inu0, p4=|x+iy z1 z2|2,z1=z1exp( iu0),0;1,001n,s;z1,z2(u,x,y)n (2.80)= f2expq7, q7= solutionsfrom1013areparticularcasesof(2.81)forf0=1,g=0. calculatingmeanvaluesinthestates(2.78),weget1 (f g

53、)z1+(f g)z1.(2.82)p2= h2 herewehavetakenintoaccounttherelations(2.6),(2.36),(2.79),andtheorthogonalityofthestateswithrespecttotheindicesn,s.remembernowthatinclassicaltheorythe clclcorrespondingmomentap1,p2havethefollowingparametricrepresentation(withu0being theevolutionparameter,rradiusoftheclassicalorbit,andisgivenby(2.67)itiseasytoseethat(2.82)coincideswith(2.83)forz1=(/2)1/2r(f0e i 0+g0ei 0).cal- x2,we ndthattheyevolveasthecorrespondingculatingmeanvaluesofthecoordinates 2classicalquantitiesx1cl,x2cl(x1(0),x(0)arecoordinatesoftheorbitcen

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論