ProbabilisticRobotics第二章總結(jié)_第1頁(yè)
ProbabilisticRobotics第二章總結(jié)_第2頁(yè)
ProbabilisticRobotics第二章總結(jié)_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Key Topic 1: Robot Environment Interaction1 StateEnvironments are characterized by state.? State 滬? State at time t1) Typical State Variables? Robot pose: 6 state variables: (x, y, z) for Cartesian coordinates; (pitch, roll, yaw) for angular orientation (Kinematic State)? Configuration of the robot

2、s actuators? (Kinematic State)? Robot velocity and the velocities of its joints. 6 variables, each for 1 pose variabl?e (Dynamic State)? Location and features of surrounding objects in the environment.? Location and velocities of moving objects and people? A huge number of others?2) Complete State?

3、Best predictor of the future? Completeness entails that knowledge of past states, measurements or controls carry no additional information that would help us to predict the future more accurately?3) Incomplete State? In practice, it is impossible to specify a complete state for any realistic robot s

4、ystem? Therefore, practical implementations single out a small subset of all state variable?s T Incompleteness4) Hybrid State Space? State can be continuous (e.g., robot pose), can be discrete (e.g., sensor broken or not). ? State spaces that contain both continuous and discrete variables acraeWcdHy

5、brid state spaces?2 Environment Interaction1) Two fundamental types of interaction between a robot and its environment:a) Robot T influence the state of T Environment (Via actuator)? Control actions.? Always execute a control action, even when no motor is move?db) Robot & gather state info from

6、A-Environment (Via sensor)? Percept, observation or measurement. ? Always have delays?2) Two different data streams:a) Measurement data?b) Control data:U/3 Probabilistic Generative LawsThe probabilistic law characterizing the evolution of state: depending on all past states, measurements and contr?o

7、lsIf state x is complete,?嗆屁一血"叫)=PgTransition.P(zt I xo: t>-卩 I A 八Measurement Probability4 Belief DistributionsA belief reflects the robots intenial knowledge about the state of the environmen?t A belief, or state of knowledgewith regards to a state should be distinguished from the true st

8、ate itself. We,which is an abbreviation for the posteriordenotebbedl(iexft) = p(xjz 1:f/u1:r)assumed that belief is taken after incorporating the measurement "We denote posterior before incorporating as follows:=ul:t)which is also referred to asprediction in the context of probabilistic filteri

9、ng. Calculating 力口心 from 叫丿 js called correction or the measurement update.Ke)y Topic 2:Bayes FiltersThe Bayes Filter Algorithm1:2:3:4:5:ao:atAlgorithm Bayes_filter 嚴(yán)'厲一for all do況 7(可)=Jp(xr| uvxt_x)bel(xt_x)dx belAx) = rp(z tx()Aelxt)en dfort belxt)return '"The algorithm has two essential steps First step is called control updatepr bel(x" predicti on. The sec ond step is called the measureme nt updateTo compute the posterior belief recursively, the algorithm requires an ini

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論