版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、多元函數(shù)微分學(xué)多元函數(shù)微分學(xué) 一、多元函數(shù)的概念一、多元函數(shù)的概念 三、全微分三、全微分 四、多元函數(shù)的極值四、多元函數(shù)的極值二、偏導(dǎo)數(shù)二、偏導(dǎo)數(shù) 設(shè)設(shè)),(000yxP是是xoy平面上的一個(gè)點(diǎn),平面上的一個(gè)點(diǎn), 是某是某一正數(shù),與點(diǎn)一正數(shù),與點(diǎn)),(000yxP距離小于距離小于 的點(diǎn)的點(diǎn)),(yxP的全體,稱為點(diǎn)的全體,稱為點(diǎn)0P的的 鄰域,記為鄰域,記為),(0 PU,(1)鄰域)鄰域0P ),(0 PU |0PPP .)()(| ),(2020 yyxxyx一、多元函數(shù)的概念一、多元函數(shù)的概念 (2)區(qū)域)區(qū)域.)(的內(nèi)點(diǎn)的內(nèi)點(diǎn)為為則稱則稱,的某一鄰域的某一鄰域一個(gè)點(diǎn)如果存在點(diǎn)一個(gè)點(diǎn)如果
2、存在點(diǎn)是平面上的是平面上的是平面上的一個(gè)點(diǎn)集,是平面上的一個(gè)點(diǎn)集,設(shè)設(shè)EPEPUPPE .EE 的內(nèi)點(diǎn)屬于的內(nèi)點(diǎn)屬于EP .為開集為開集則稱則稱的點(diǎn)都是內(nèi)點(diǎn),的點(diǎn)都是內(nèi)點(diǎn),如果點(diǎn)集如果點(diǎn)集EE41),(221 yxyxE例如,例如,即為開集即為開集的邊界點(diǎn)的邊界點(diǎn)為為),則稱),則稱可以不屬于可以不屬于,也,也本身可以屬于本身可以屬于的點(diǎn)(點(diǎn)的點(diǎn)(點(diǎn)也有不屬于也有不屬于的點(diǎn),的點(diǎn),于于的任一個(gè)鄰域內(nèi)既有屬的任一個(gè)鄰域內(nèi)既有屬如果點(diǎn)如果點(diǎn)EPEEPEEPEP 的邊界的邊界的邊界點(diǎn)的全體稱為的邊界點(diǎn)的全體稱為 EE是連通的是連通的開集開集,則稱,則稱且該折線上的點(diǎn)都屬于且該折線上的點(diǎn)都屬于連結(jié)起來
3、,連結(jié)起來,任何兩點(diǎn),都可用折線任何兩點(diǎn),都可用折線內(nèi)內(nèi)是開集如果對(duì)于是開集如果對(duì)于設(shè)設(shè)DDDD 連通的開集稱為區(qū)域或開區(qū)域連通的開集稱為區(qū)域或開區(qū)域.41| ),(22 yxyx例如,例如,xyo開開區(qū)區(qū)域域連連同同它它的的邊邊界界一一起起稱稱為為閉閉區(qū)區(qū)域域.41| ),(22 yxyx例如,例如,xyo0| ),( yxyx有界閉區(qū)域;有界閉區(qū)域;無界開區(qū)域無界開區(qū)域xyo例如,例如,則稱為無界點(diǎn)集則稱為無界點(diǎn)集為有界點(diǎn)集,否為有界點(diǎn)集,否成立,則稱成立,則稱對(duì)一切對(duì)一切即即,不超過不超過間的距離間的距離與某一定點(diǎn)與某一定點(diǎn),使一切點(diǎn),使一切點(diǎn)如果存在正數(shù)如果存在正數(shù)對(duì)于點(diǎn)集對(duì)于點(diǎn)集EE
4、PKAPKAPAEPKE 41| ),(22 yxyx 設(shè)設(shè)D是平面上的一個(gè)點(diǎn)集,如果對(duì)于每個(gè)點(diǎn)是平面上的一個(gè)點(diǎn)集,如果對(duì)于每個(gè)點(diǎn)DyxP ),(,變量,變量z按照一定的法則總有確定的按照一定的法則總有確定的值和它對(duì)應(yīng),則稱值和它對(duì)應(yīng),則稱z是變量是變量yx,的二元函數(shù),記為的二元函數(shù),記為),(yxfz (或記為(或記為)(Pfz ). .(5)二元函數(shù)的定義)二元函數(shù)的定義當(dāng)當(dāng)2 n時(shí)時(shí),n元元函函數(shù)數(shù)統(tǒng)統(tǒng)稱稱為為多多元元函函數(shù)數(shù). 多元函數(shù)中同樣有定義域、值域、自變量、多元函數(shù)中同樣有定義域、值域、自變量、因變量等概念因變量等概念.類似地可定義三元及三元以上函數(shù)類似地可定義三元及三元以上
5、函數(shù)例例1 1 求求 的定義域的定義域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定義域?yàn)樗蠖x域?yàn)?, 42| ),(222yxyxyxD 二元函數(shù)的圖形通常是一張曲面二元函數(shù)的圖形通常是一張曲面.xyzoxyzsin 例如例如,圖形如右圖圖形如右圖.2222azyx 例如例如,左圖球面左圖球面.),(222ayxyxD 222yxaz .222yxaz 單值分支單值分支:二、偏導(dǎo)數(shù)二、偏導(dǎo)數(shù)同理可定義同理可定義函數(shù)函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx處對(duì)處對(duì)y的偏導(dǎo)數(shù),的偏導(dǎo)數(shù), 為為yyxfyyxfy ),(),(lim0000
6、0 記為記為00yyxxyz ,00yyxxyf ,00yyxxyz 或或),(00yxfy. .00yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.同理可以定義函數(shù)同理可以定義函數(shù)),(yxfz 對(duì)自變量對(duì)自變量y的偏導(dǎo)的偏導(dǎo)數(shù),記作數(shù),記作yz ,yf ,yz或或),(yxfy.偏導(dǎo)數(shù)的概念可以推廣到二元以上函數(shù)偏導(dǎo)數(shù)的概念可以推廣到二元以上函數(shù)如如 在在 處處 ),(zyxfu ),(zyx,),(),(lim),(0 xzyxfzyxxfzyxfxx ,),(),(lim),(0yzyxfzyyxfzyxfyy .),(),(lim),(0zzyxfzzy
7、xfzyxfzz 解解 xz;32yx yz.23yx 21yxxz,82312 21yxyz.72213 ),(22yxfxzxzxxx ),(22yxfyzyzyyy ),(2yxfyxzxzyxy ),(2yxfxyzyzxyx 函函數(shù)數(shù)),(yxfz 的的二二階階偏偏導(dǎo)導(dǎo)數(shù)數(shù)為為純偏導(dǎo)純偏導(dǎo)混合偏導(dǎo)混合偏導(dǎo)定義:二階及二階以上的偏導(dǎo)數(shù)統(tǒng)稱為高階定義:二階及二階以上的偏導(dǎo)數(shù)統(tǒng)稱為高階偏導(dǎo)數(shù)偏導(dǎo)數(shù).高階偏導(dǎo)數(shù)高階偏導(dǎo)數(shù)例例 5設(shè)設(shè)13323 xyxyyxz,求求22xz 、xyz 2、yxz 2、22yz 及33xz .解解xz ,33322yyyx yz ;9223xxyyx 22xz
8、,62xy 22yz ;1823xyx 33xz ,62y xyz 2. 19622 yyxyxz 2, 19622 yyx例例 6 6 設(shè)設(shè)byeuaxcos ,求求二二階階偏偏導(dǎo)導(dǎo)數(shù)數(shù).解解,cosbyaexuax ;sinbybeyuax ,cos222byeaxuax ,cos222byebyuax ,sin2byabeyxuax .sin2byabexyuax 鏈?zhǔn)椒▌t鏈?zhǔn)椒▌t定理的結(jié)論可推廣到中間變量多于兩個(gè)的情況定理的結(jié)論可推廣到中間變量多于兩個(gè)的情況.如如dtdwwzdtdvvzdtduuzdtdz uvwtz以上公式中的導(dǎo)數(shù)以上公式中的導(dǎo)數(shù) 稱為稱為dtdz 上定理還可推廣到
9、中間變量不是一元函數(shù)上定理還可推廣到中間變量不是一元函數(shù)而是多元函數(shù)的情況:而是多元函數(shù)的情況:).,(),(yxyxfz 如果如果),(yxu 及及),(yxv 都在點(diǎn)都在點(diǎn)),(yx具有對(duì)具有對(duì)x和和y的偏導(dǎo)數(shù),且函數(shù)的偏導(dǎo)數(shù),且函數(shù)),(vufz 在對(duì)應(yīng)在對(duì)應(yīng)點(diǎn)點(diǎn)),(vu具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)),(),(yxyxfz 在對(duì)應(yīng)點(diǎn)在對(duì)應(yīng)點(diǎn)),(yx的兩個(gè)偏的兩個(gè)偏導(dǎo)數(shù)存在,且可用下列公式計(jì)算導(dǎo)數(shù)存在,且可用下列公式計(jì)算 xvvzxuuzxz , yvvzyuuzyz .uvxzy鏈?zhǔn)椒▌t如圖示鏈?zhǔn)椒▌t如圖示 xz uzxu vz,xv yz uzyu vz.y
10、v 例例 1 1 設(shè)設(shè)vezusin ,而,而xyu ,yxv , 求求 xz 和和yz .解解 xz uzxu vzxv 1cossin veyveuu),cossin(vvyeu yz uzyu vzyv 1cossin vexveuu).cossin(vvxeu 例例 2 2 設(shè)設(shè)tuvzsin ,而而teu ,tvcos , 求求全全導(dǎo)導(dǎo)數(shù)數(shù)dtdz.解解tzdtdvvzdtduuzdtdz ttuvetcossin ttetettcossincos .cos)sin(costttet ),(),(yxfyxxf xyxfx ),(),(),(yxfyyxf yyxfy ),( 二二元
11、元函函數(shù)數(shù)對(duì)對(duì)x和和對(duì)對(duì)y的的偏偏微微分分 二二元元函函數(shù)數(shù)對(duì)對(duì)x和和對(duì)對(duì)y的的偏偏增增量量由一元函數(shù)微分學(xué)中增量與微分的關(guān)系得由一元函數(shù)微分學(xué)中增量與微分的關(guān)系得三、全微分三、全微分 如果函數(shù)如果函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx的某鄰域內(nèi)的某鄰域內(nèi)有定義,并設(shè)有定義,并設(shè)),(yyxxP 為這鄰域內(nèi)的為這鄰域內(nèi)的任意一點(diǎn),則稱這兩點(diǎn)的函數(shù)值之差任意一點(diǎn),則稱這兩點(diǎn)的函數(shù)值之差 ),(),(yxfyyxxf 為函數(shù)在點(diǎn)為函數(shù)在點(diǎn) P對(duì)應(yīng)于自變量增量對(duì)應(yīng)于自變量增量yx ,的全增的全增量,記為量,記為z , 即即 z =),(),(yxfyyxxf 全增量的概念全增量的概念 如果函數(shù)如果函
12、數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx的全增量的全增量),(),(yxfyyxxfz 可以表示為可以表示為)( oyBxAz ,其中,其中BA,不依賴于不依賴于yx ,而僅與而僅與yx,有關(guān),有關(guān),22)()(yx ,則稱函數(shù)則稱函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx可微分,可微分,yBxA 稱為函數(shù)稱為函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx的的全微分全微分,記為,記為dz,即,即 dz= =yBxA . .全微分的定義全微分的定義習(xí)慣上,記全微分為習(xí)慣上,記全微分為.dyyzdxxzdz 全微分的定義可推廣到三元及三元以上函數(shù)全微分的定義可推廣到三元及三元以上函數(shù).dzzudyyudxxudu
13、 通常我們把二元函數(shù)的全微分等于它的兩個(gè)通常我們把二元函數(shù)的全微分等于它的兩個(gè)偏微分之和這件事稱為二元函數(shù)的微分符合偏微分之和這件事稱為二元函數(shù)的微分符合疊加原理也適用于二元以上函數(shù)的情況疊加原理也適用于二元以上函數(shù)的情況例例 1 1 計(jì)算函數(shù)計(jì)算函數(shù)xyez 在點(diǎn)在點(diǎn))1 , 2(處的全微分處的全微分.解解,xyyexz ,xyxeyz ,2)1 ,2(exz ,22)1 ,2(eyz .222dyedxedz 所求全微分所求全微分例例 2 2 求函數(shù)求函數(shù))2cos(yxyz ,當(dāng),當(dāng)4 x, y,4 dx, dy時(shí)的全微分時(shí)的全微分.解解),2sin(yxyxz ),2sin(2)2co
14、s(yxyyxyz dyyzdxxzdz),4(),4(),4( ).74(82 例例 3 3 計(jì)計(jì)算算函函數(shù)數(shù)yzeyxu 2sin的的全全微微分分.解解, 1 xu,2cos21yzzeyyu ,yzyezu 所求全微分所求全微分.)2cos21(dzyedyzeydxduyzyz 實(shí)例:某商店賣兩種牌子的果汁,本地牌子每實(shí)例:某商店賣兩種牌子的果汁,本地牌子每瓶進(jìn)價(jià)瓶進(jìn)價(jià)1元,外地牌子每瓶進(jìn)價(jià)元,外地牌子每瓶進(jìn)價(jià)1.2元,店主估元,店主估計(jì),如果本地牌子的每瓶賣計(jì),如果本地牌子的每瓶賣 元,外地牌子的元,外地牌子的每瓶賣每瓶賣 元,則每天可賣出元,則每天可賣出 瓶本瓶本地牌子的果汁,地牌
15、子的果汁, 瓶外地牌子的果汁瓶外地牌子的果汁問:店主每天以什么價(jià)格賣兩種牌子的果汁可問:店主每天以什么價(jià)格賣兩種牌子的果汁可取得最大收益?取得最大收益?xyyx4570 yx7680 每天的收益為每天的收益為 ),(yxf)7680)(2 . 1()4570)(1(yxyyxx 求最大收益即為求二元函數(shù)的最大值求最大收益即為求二元函數(shù)的最大值.四、四、多元函數(shù)的極值多元函數(shù)的極值 設(shè)函數(shù)設(shè)函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx的某鄰域內(nèi)的某鄰域內(nèi)有定義,對(duì)于該鄰域內(nèi)異于有定義,對(duì)于該鄰域內(nèi)異于),(00yx的點(diǎn)的點(diǎn)),(yx:若滿足不等式若滿足不等式),(),(00yxfyxf ,則稱函數(shù)
16、,則稱函數(shù)在在),(00yx有 極 大 值 ; 若 滿 足 不 等 式有 極 大 值 ; 若 滿 足 不 等 式),(),(00yxfyxf ,則稱函數(shù)在,則稱函數(shù)在),(00yx有極有極小值;小值;1 1、二元函數(shù)極值的定義、二元函數(shù)極值的定義極大值、極小值統(tǒng)稱為極值極大值、極小值統(tǒng)稱為極值. .使函數(shù)取得極值的點(diǎn)稱為極值點(diǎn)使函數(shù)取得極值的點(diǎn)稱為極值點(diǎn). .(1)(2)(3)例例1 1處有極小值處有極小值在在函數(shù)函數(shù))0 , 0(4322yxz 例例處有極大值處有極大值在在函數(shù)函數(shù))0 , 0(22yxz 例例處無極值處無極值在在函數(shù)函數(shù))0 , 0(xyz 定理定理 1 1(必要條件)(必
17、要條件)設(shè)函數(shù)設(shè)函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx具有偏導(dǎo)數(shù),且具有偏導(dǎo)數(shù),且在點(diǎn)在點(diǎn)),(00yx處有極值,則它在該點(diǎn)的偏導(dǎo)數(shù)必處有極值,則它在該點(diǎn)的偏導(dǎo)數(shù)必然為零:然為零: 0),(00 yxfx, 0),(00 yxfy. .2 2、多元函數(shù)取得極值的條件、多元函數(shù)取得極值的條件例如例如, 點(diǎn)點(diǎn))0 , 0(是函數(shù)是函數(shù)xyz 的駐點(diǎn),的駐點(diǎn),但但不不是是極極值值點(diǎn)點(diǎn). 仿照一元函數(shù),凡能使一階偏導(dǎo)數(shù)同時(shí)為零仿照一元函數(shù),凡能使一階偏導(dǎo)數(shù)同時(shí)為零的點(diǎn),均稱為函數(shù)的的點(diǎn),均稱為函數(shù)的駐點(diǎn)駐點(diǎn).駐點(diǎn)駐點(diǎn)極值點(diǎn)極值點(diǎn)問題:如何判定一個(gè)駐點(diǎn)是否為極值點(diǎn)?問題:如何判定一個(gè)駐點(diǎn)是否為極值點(diǎn)
18、?定理定理 2 2(充分條件)(充分條件)設(shè)函數(shù)設(shè)函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx的某鄰域內(nèi)連續(xù),的某鄰域內(nèi)連續(xù),有一階及二階連續(xù)偏導(dǎo)數(shù),有一階及二階連續(xù)偏導(dǎo)數(shù),注意:注意:又又 0),(00 yxfx, , 0),(00 yxfy, 令令 Ayxfxx ),(00, Byxfxy ),(00, Cyxfyy ),(00,則則),(yxf在點(diǎn)在點(diǎn)),(00yx處是否取得極值的條件如下:處是否取得極值的條件如下:(1 1)02 BAC時(shí)具有極值,時(shí)具有極值, 當(dāng)當(dāng)0 A時(shí)有極大值,時(shí)有極大值, 當(dāng)當(dāng)0 A時(shí)有極小值;時(shí)有極小值;(2 2)02 BAC時(shí)沒有極值;時(shí)沒有極值;(3 3)0
19、2 BAC時(shí)可能有極值時(shí)可能有極值, ,也可能沒有極值,也可能沒有極值,還需另作討論還需另作討論將方程兩邊分別對(duì)將方程兩邊分別對(duì)yx,求偏導(dǎo)求偏導(dǎo) 0422204222yyxxzzzyzzzx由由函函數(shù)數(shù)取取極極值值的的必必要要條條件件知知,駐駐點(diǎn)點(diǎn)為為)1, 1( P,將將上上方方程程組組再再分分別別對(duì)對(duì)yx,求求偏偏導(dǎo)導(dǎo)數(shù)數(shù),解解,21|, 0|,21|zzCzBzzAPyyPxyPxx 故故 )2(0)2(122 zzACB,函函數(shù)數(shù)在在P有有極極值值.將將)1, 1( P代代入入原原方方程程,有有6, 221 zz,當(dāng)當(dāng)21 z時(shí)時(shí),041 A,所所以以2)1, 1( fz為為極極小小
20、值值;當(dāng)當(dāng)62 z時(shí)時(shí),041 A,所以所以6)1, 1( fz為極大值為極大值.求函數(shù)求函數(shù)),(yxfz 極值的一般步驟:極值的一般步驟:第第一一步步 解解方方程程組組, 0),( yxfx0),( yxfy求出實(shí)數(shù)解,得駐點(diǎn)求出實(shí)數(shù)解,得駐點(diǎn).第二步第二步 對(duì)于每一個(gè)駐點(diǎn)對(duì)于每一個(gè)駐點(diǎn)),(00yx,求出二階偏導(dǎo)數(shù)的值求出二階偏導(dǎo)數(shù)的值 A、B、C.第三步第三步 定出定出2BAC 的符號(hào),再判定是否是極值的符號(hào),再判定是否是極值.無條件極值無條件極值:對(duì)自變量除了限制在定義域內(nèi)對(duì)自變量除了限制在定義域內(nèi)外,并無其他條件外,并無其他條件.實(shí)例:實(shí)例: 小王有小王有200元錢,他決定用來購買兩元錢,他決定用來購買兩種急需物品:計(jì)算機(jī)磁盤和錄音磁帶,設(shè)他種急需物品:計(jì)算機(jī)磁盤和錄音磁帶,設(shè)他購買購買 張磁盤,張磁盤, 盒錄音磁帶達(dá)到最佳效果,盒錄音磁帶達(dá)到最佳效果,效果函數(shù)為效果函數(shù)為 設(shè)每張磁設(shè)每張磁盤盤8元,每盒磁帶元,每盒磁帶10元,問他如何分配這元,問他如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)老院食堂與便利店運(yùn)營管理合同4篇
- 2025年度生態(tài)農(nóng)業(yè)大棚使用權(quán)轉(zhuǎn)讓合同模板4篇
- 2025年度文化產(chǎn)品代理采購合同模板4篇
- 2024版英文技術(shù)服務(wù)合同范本規(guī)范
- 2024進(jìn)戶門銷售合同
- 2024訴訟代理委托合同范本
- 2025年度專業(yè)論壇會(huì)議組織合同范本4篇
- 2025年度數(shù)字音樂詞曲版權(quán)交易合作合同范本4篇
- 2025年度新能源汽車項(xiàng)目代理投標(biāo)合同樣本4篇
- 2024施工簡易合同范本(橋梁檢測(cè)與維修)3篇
- 中國的世界遺產(chǎn)智慧樹知到期末考試答案2024年
- 2023年貴州省銅仁市中考數(shù)學(xué)真題試題含解析
- 世界衛(wèi)生組織生存質(zhì)量測(cè)量表(WHOQOL-BREF)
- 《葉圣陶先生二三事》第1第2課時(shí)示范公開課教學(xué)PPT課件【統(tǒng)編人教版七年級(jí)語文下冊(cè)】
- 某送電線路安全健康環(huán)境與文明施工監(jiān)理細(xì)則
- GB/T 28885-2012燃?xì)夥?wù)導(dǎo)則
- PEP-3心理教育量表-評(píng)估報(bào)告
- 控制性詳細(xì)規(guī)劃編制項(xiàng)目競(jìng)爭性磋商招標(biāo)文件評(píng)標(biāo)辦法、采購需求和技術(shù)參數(shù)
- 《增值稅及附加稅費(fèi)申報(bào)表(小規(guī)模納稅人適用)》 及其附列資料-江蘇稅務(wù)
- 中南民族大學(xué)中文成績單
- 危大工程安全管理措施方案
評(píng)論
0/150
提交評(píng)論