第十二章動量矩定理_第1頁
第十二章動量矩定理_第2頁
第十二章動量矩定理_第3頁
第十二章動量矩定理_第4頁
第十二章動量矩定理_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第十二章動量矩定理一、質(zhì)點對固定點動量矩的概念(v M m O (v M m O OQA=2sin r mv =vr m ×=(v m M z zO m (v M =質(zhì)點對O 點的動量矩矢在z 軸上的投影,等于對z 軸的動量矩二、質(zhì)點系對固定點動量矩的概念O L =(i i O m v M ×=ii i m v r zO i i z z v m M L L =(×=vr v M L i i i i O O m m (v r ×=i i m v r ×=C m vr m C ×=將全部質(zhì)量集中于質(zhì)心,作為一個質(zhì)點計算其動量矩 =(i i

2、 z z m M L v =i i i v m r =2ii r m z J=繞定軸轉(zhuǎn)動的剛體對其轉(zhuǎn)軸的動量矩等于剛體對轉(zhuǎn)軸的轉(zhuǎn)動慣量與角速度的乘積。mm 400R2221(18/2O O L J m R m l kgm s =+=(1圓盤作定軸轉(zhuǎn)動(2圓盤作平面運動s kgm l mv mR L A a O /202122=+=O A r O a l v s rad =+=,/8(3圓盤作平動C O C C L L r mv =+×討論一、質(zhì)點對固定點的動量矩定理 F v =(d d m t F r v r ×=×(d d m t F r v r ×=

3、×(d d m t(F M O O t d mv M d=質(zhì)點對定點的動量矩對時間的一階導(dǎo)數(shù)等于作用力對同一點的矩二、質(zhì)點對固定點動量矩的守恒 (0(=F M F M z O 或若t A t d A d t =0lim 2vh =(F M O O td M d =Constv r =×m三、質(zhì)點系對固定點的動量矩定理11 (e O O dM M F dt =+(e Oi O i dM M F dt =+#(e On O n dM M F dt =+解:取小球與桿構(gòu)成的系統(tǒng) 為研究對象,由對z 軸的動量矩守恒:L m a az 102=L L z z 12=L m a l z

4、 222=+(sin =+a a l 220(sin 解:取在一個葉片上的水流質(zhì)點系為研 究對象,受力分析和運動分析如圖。由動量矩定理有:=(d d z e i z M tL F ABCDabcd z L L L =d abCDABab CDcd abCD L L L L +=ABab CDcd L L =(d d z e i z M tL F 222cos r v t d q L VCDcd =111cos r v t d q L VABab =z VM r v r v t d q =cos cos (111222cos cos (d 111222r v r v t q n M Vz =AB

5、abCDcd z L L L = d 解:取鼓輪與兩重物組成的系統(tǒng)研究對象,由對O 軸的動量矩定理有:=(e i o o F M dt dL 2211222211(gr m gr m r m r m J dtd o =+g r m r m J r m r m o 2222112211(+= Ox F =e i F dt dp (2211r m r m dt d +0Ox F =121122Oy F W m g m g m r m r =+=+W m m g m r m r J m r m r g o (121122211212212Oy F W m g m g=動量矩定理應(yīng)用小結(jié)第十二章動量矩

6、定理應(yīng)用動量矩定理求解動力學(xué)問題的步驟為:定理一般用來解決系統(tǒng)已知力求運動的問題,在運動已確定的情況下也可用來求未知力。 第十二章動量矩定理剛體定軸轉(zhuǎn)動微分方程=(d d z e i z M t L F =(d d e i z z M J tF =(ei z z M J F剛體對定軸的轉(zhuǎn)動慣量與角加速度的乘積等于作用于剛體的主動力對該軸的矩的代數(shù)和。=(ei z z M J F 第十二章動量矩定理剛體定軸轉(zhuǎn)動微分方程解:取物體為研究對象,受力分析和運 動分析如圖。由動量矩定理有:=(ei z z M J F sin mga J O = 0=+O J mga +=t J mga O sin 0m

7、gaJ T O 2=ir i i ir i C C v m r v m L ×=(M ×=ii i O m v r L ×+=ii i C m v r r (×+×=ii i i i C m m v r v r CC C O m v r L L ×+=一、質(zhì)點系對質(zhì)心的動量矩質(zhì)點系對任意點O 的動量矩等于質(zhì)點系對其質(zhì)心的動量矩與集中于質(zhì)心的質(zhì)點系動量對O 點的動量矩的矢量和。iri i ir i C C v m r v m L ×=( M i C i v v v +=i i i C v m r L ×=ii i C

8、 v m r L ×=質(zhì)點系在相對運動和絕對運動中對質(zhì)心的動量矩是相等的。二、質(zhì)點系對質(zhì)心的動量矩定理(×=+×=e i i C C C O m t t F r L v r L d d d d C C m t v r ×d d ×=e i i C tF r L d d =(d d e i C C tF M L C C m tv r d d ×+t C d d L +×=e i C F r ×+e i i F r 質(zhì)點系對質(zhì)心的動量矩對時間的導(dǎo)數(shù)等于作用于質(zhì)點系的外力對質(zhì)心的主矩剛體平面運動微分方程×=ir

9、 i i C m v r L =e ix C F tx m 22d d =e iy C F ty m 22d d =(d d 22e i C C M t J F C J =討 論第十二章動量矩定理(e iC m =F a =(e i C C M J F 請分析直升飛機的尾漿有什么作用?其主漿的軸是在鉛直方向嗎? 解:取圓盤為研究對象,受力分析和運動 分析如圖。由剛體平面運動方程有:=ix F xm F ma C =iy F ym mg F N =0=C C M J Fr M m C=2若圓盤純滾動,有運動學(xué)補充關(guān)系:r a C =Cma F =mg F N =(22r m Mr a C C +

10、=rr F M C (22+=若圓盤純滾動,應(yīng)滿足靜滑動 摩擦定律:NS F f F r rmg f M C S 22+ 解:1、桿在任意位置的受力分析2、分析桿質(zhì)心的運動=cos 2sin 2l y l x C C =sin 2cos 2 l y l x C C +cos 2sin 22 l l+cos 2sin 22 l l 3.列寫桿的平面運動微分方程A C X l l g P X x m =+=cos 2sin 2(,2 P Y l l g P Y y m B C =sin 2cos 2(,2 cos 2sin 212,F (2l X l Y l g P M J A B C C = 4

11、.求解微分方程sin 23lg = rP kR s 22=由質(zhì)點系對固定點的動量矩定理建立系統(tǒng)運動微分方程(r P kR r g P g P dt d s 222121+=+ 022221=+kR r g P g P=222ll Cx dxJ=1122m l=lA xdx J02=132 ml =RO r rdr J 022=122mR =2002cos (R y r dr rd J =d r R cos 2400214=142mR x J =2mR J z = '(222i i i i i z y x m r m J +=d y y x x i i i i +=, 2(2(22222

12、222i i i i i i i ii i i i i z m d y m d y x m d dy y x m d y x m J +=+=+=0=C i i my y m 2md J J zC z +=小結(jié)1.質(zhì)點系動量矩=×=ni ni ii i i i O O v m r v m M L 11(質(zhì)點系對于某軸=ni i i z z m M L 1v (C C C O v m r L L ×+=2.質(zhì)點系動量矩定理(e O O M dtL d =4.質(zhì)點系相對質(zhì)心動量矩定理(e CC M dtL d =5.剛體平面運動微分方程=F (C C C C M J Y y m

13、 X x m =(e z cze y cy e xcx F Ma F Ma FMa 質(zhì)心運動定理=ni e ic F Ma 1(剛體繞定軸轉(zhuǎn)動微分方程=(F M J Y ma Xma C C Cy Cx 平面運動微分方程(F M J J z Z Z = 教程 教程第十二章動量矩定理習(xí)題本章習(xí)題習(xí)題要求1基本公式要列明;2運動狀態(tài)參量求得后要在圖上畫明;3投影軸要畫清寫明;質(zhì)點和質(zhì)點系的動量矩=(i i z z m M L v =i i i v m r =i i i r m r =2ii r m z J ± =第十二章動量矩定理剛體平面運動微分方程×=ir i i C m v

14、 r L =e ixC F t x m 22d d =e iyC F t y m 22d d =(d d 22e iy C C M tJ F C J =第十二章動量矩定理1 均質(zhì)實心圓柱A 和薄鐵環(huán)B 的質(zhì)量均為m ,半徑都等于r ,兩球用桿AB 鉸接,無滑動地沿斜面滾下,斜面與水平面的夾角為,如桿的質(zhì)量忽略不計,求桿AB 的加速度和桿的內(nèi)力。DR F F mg ma +=sin C RF F mg ma =sin raF F R R =,sin 71sin 74mg F g r a R =實體A :質(zhì)心運動定理:動量矩定理:D rF mr =221圓環(huán)B :CrF mr =2a NCF RF

15、 CF mgmgDF NCF RFDrF mr =221CrF r amr mr =22maF C =maF D 21=環(huán)B 、實心圓柱A 及AB 桿應(yīng)用質(zhì)心運動定理=Fma DC F F mg ma =sin 22sin 74g r a =C RF F mg ma =sin 圓環(huán)B :sin 71mg F R =NCF RF CF mgmgDF NCF RF 環(huán)B 、實心圓柱A 應(yīng)用動量矩定理2重物A 質(zhì)量為m 1,系在繩子上,繩子跨過不計質(zhì)量的固定滑輪D 并繞在鼓輪B 上,由于重物下降,帶動了輪C ,使它沿水平軌道滾動而不滑動。設(shè)鼓輪半徑為r ,輪C 的半徑為R ,兩者固連在一起,總質(zhì)量為

16、m 2 ,對于其水平軸O 的回轉(zhuǎn)半徑為。求重物A 的加速度。gm 1ADF BDF gm 2NF SF 解:AD A F g m a m =11S BD O F F a m =2RF r F m S BD +=22r R a A+=BDAD F F =(2222121R m R r m R r g m a A +=Aa Oa A a AO a rR R R a +=3 質(zhì)量為m2半徑為R的均質(zhì)圓盤,置于質(zhì)量為m1的平板上,沿平 板加一常力F 。設(shè)平板與地面間摩擦系數(shù)為f ,平板與圓盤間的接 觸是足夠粗糙的,求圓盤中心A點的加速度。 平板應(yīng)用質(zhì) 心運動定理 m1 a = F F1 F2 ar m

17、2 g a aA F2 m 2 a A = F2 圓盤作平面運動 1 2 m 2 R = F2 R 2 F1 = fF N 1 = f ( m1 + m 2 g F f ( m1 + m 2 g aA = m2 m1 + 3 a A = a R F N2 F2 F1 2 FN m1 g a 4 長為L、質(zhì)量為m的均質(zhì)桿AB受力如圖。將繩子突然剪斷。 求:該瞬時AB桿的角加速度和A處的約束反力 NAy NAx A C 繩子被突然剪斷AB桿角速度為零, 角加速度不為零。 = 0 0 B AB桿作定軸轉(zhuǎn)動 aC mg 根據(jù)質(zhì)心運動定理 l 1 2 ml = mg 3 2 l 3 aC = = g 2 4 N Ax = 0 N Ay 1 = mg 4 3g = 2l n aC =0 ma x = N Ax = 0 ma y = mg N Ay 5 已知均質(zhì)桿AB、BD,重均為P,LAB=LBD=l ,不計滑塊重量。 求剪斷繩子瞬時滑槽對滑塊的反力。 D N/Bx B A 30。 mg NBy B NBx C N/By D ND BD桿作平面運動 繩子被剪斷時兩桿的角速

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論