工程經(jīng)濟(jì)學(xué)例題與練習(xí)_第1頁
工程經(jīng)濟(jì)學(xué)例題與練習(xí)_第2頁
工程經(jīng)濟(jì)學(xué)例題與練習(xí)_第3頁
工程經(jīng)濟(jì)學(xué)例題與練習(xí)_第4頁
工程經(jīng)濟(jì)學(xué)例題與練習(xí)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第二章 資金的時(shí)間價(jià)值一、例題【例2。2】有一筆50000元的借款,借期3年,年利率為8%,試分別計(jì)算計(jì)息方式為單利和復(fù)利時(shí),其應(yīng)歸還的本利和?!窘狻坑脝卫ㄓ?jì)算: FP(1+i·n)50,000×(1+8×3)62,000(元) 用復(fù)利法計(jì)算:Fn=P(1+i)n=50,000×(1+8)3=62,985。60(元)【例題23】現(xiàn)設(shè)年名義利率r15,則計(jì)息周期為年、半年、季、月、日、無限小時(shí)的年實(shí)際利率為多少?解:年名義利率r15%時(shí),不同計(jì)息周期的年實(shí)際利率如下表年名義利率(r)計(jì)息周期年計(jì)息次數(shù)(m)計(jì)息周期利率(ir/m)年實(shí)際利率(ieff)1

2、5%年115%15。00%半年27。515.56季43.7515.87月121。2516。08周520.2916。16日3650。0416.18%無限小無限小16。183二、練習(xí)(1)若年利率i=6,第一年初存入銀行100元,且10年中每年末均存入100元,試計(jì)算:到第十年末時(shí)的本利和?其現(xiàn)值是多少?F年1000-1011011年100010圖1圖2其年金是多少?解:首先畫出現(xiàn)金流量圖如圖1所示,圖1可轉(zhuǎn)化為圖2則結(jié)果為:12、3、(2)已知年利率i=12%,某企業(yè)向金融機(jī)構(gòu)貸款100萬元。 (1)若五年后一次還清本息共應(yīng)償還本息多少元? (2)若五年內(nèi)每年末償還當(dāng)年利息,第五年末還清本息,五

3、年內(nèi)共還本息多少元?(3)若五年內(nèi)每年末償還等額的本金和當(dāng)年利息,五年內(nèi)共還本息多少元?(等額本金還款)(4)若五年內(nèi)每年末以相等的金額償還這筆借款,五年內(nèi)共還本息多少元?(等額本息還款)(5)這四種方式是等值的嗎?解:(1)(2)(3)(4)(5)以上四種方式是等值的。 三.某人存款1000元,8年后共得本息2000元,這筆存款的利率是多少?若欲使本息和翻兩番,這筆錢應(yīng)存多少年?解:由 得同理,由 得四、復(fù)利計(jì)算:(1)年利率r=12,按季計(jì)息,1000元現(xiàn)款存10年的本息和是多少?(2)年利率r=12,按月計(jì)息,每季末存款300元,連續(xù)存10年,本利和是多少?(3)年利率r=9,每半年計(jì)息

4、一次,若每半年存款600元,連續(xù)存10年,本利和是多少?解:(1)由 (2)由(3)由五、證明:(1)(P/A,i,n)=(P/A,i,n1)+(P/F,i,n)證明:右式=通分后有:(2)P(A/P,i,n)-L(A/F,i,n) = (P-L)(A/P,i,n)+LiP為原值,L為殘值的固定資產(chǎn)的折舊(年金)的計(jì)算證明:左式=上式中加一個(gè)Li,減一個(gè)Li,有=右式六。假設(shè)你從9年前開始,每月月初存入銀行50元,年利率為6,按月復(fù)利計(jì)息,你連續(xù)存入71次后停止,但把本息仍存在銀行。你計(jì)劃從現(xiàn)在起一年后,租一套房子,每月月末付100元租金,為期10年。試問:你的存款夠支付未來10年房租嗎?解:

5、=60.54(元)<100元故這筆存款不夠支付10年房租。七。某人借了5000元,打算在48個(gè)月中以等額按月每月末償還,在歸還25次之后,他想以一次支付的方式償還余額,若年利率為12,按月計(jì)息,那么,(1)若他在第26個(gè)月末還清,至少要還多少?(2)若他在第48個(gè)月末還清,至少要還多少?解:首先畫出現(xiàn)金流量圖T26=?T48=?0 1 25 26 48 月 A500026 27 48 月0 1 22T26T2626 48 月 同理25 26 48 月0 1 23T48?26 48 月T48?八。某公司1998年1月1日發(fā)行2004年1月1日到期、利息率為8%的半年計(jì)息并付息一次、面值為1

6、000元的債券。如果某人擬購此債券,但他希望能獲得年利率為12%,按半年計(jì)息的復(fù)利報(bào)酬,問在1998年1月1日該債券的價(jià)值是多少? 0 1 12 半年 P=? i=6%100040解:九.某工廠購買了一臺(tái)機(jī)器,估計(jì)能使用20年,每4年要大修一次,每次大修費(fèi)用假定為5000元,現(xiàn)在應(yīng)存入銀行多少錢才足以支付20年壽命期間的大修費(fèi)支出?按年利率12,每半年計(jì)息一次. 0 4 8 12 16 20 年 r=12% 5000 P=?5000 5000 5000 解:畫出現(xiàn)金流量圖 0 1 2 3 4 5 (4年) i P=?5000轉(zhuǎn)化為第三章 投資方案的評(píng)價(jià)指標(biāo)一、練習(xí)ic=10%30 50100

7、1500 1 2 3 4 12 年R80一。若某項(xiàng)目現(xiàn)金流量圖如下,ic=10.試求項(xiàng)目的靜態(tài)、動(dòng)態(tài)投資回收期,凈現(xiàn)值和內(nèi)部收益率。單位:萬元30 50100 150ic=10%0 1 2 3 4 12 年R80I解:上圖可轉(zhuǎn)化為 單位:萬元1。 項(xiàng)目的靜態(tài)投資回收期 I=100+150-3050=170(萬元)2。 項(xiàng)目的動(dòng)態(tài)投資回收期= 231.6(萬元)3。 項(xiàng)目的凈現(xiàn)值=172。14(萬元)4。項(xiàng)目的內(nèi)部收益率設(shè): r1=20,則NPV=11。3873 r2=25,則NPV=33。3502 故二。如果期初發(fā)生一次投資,每年末收益相同,在什麼條件下有:I0 1 n 年R解:畫出該項(xiàng)目的現(xiàn)

8、金流量圖根據(jù)定義有:由上式亦即所以又因?yàn)?IRR0即 (1+IRR)1所以,當(dāng)n趨于時(shí),因而,當(dāng)n時(shí), 此題表示如果建設(shè)項(xiàng)目壽命較長,各年的凈現(xiàn)金流量穩(wěn)定且大致相等的話,項(xiàng)目的IRR等于Pt的倒數(shù)。A0 1 M M+1 NI三。現(xiàn)金流量如下圖,試求Pt與IRR、M、N之間的關(guān)系。解:根據(jù)指標(biāo)的定義,有:所以有即此式表明項(xiàng)目建設(shè)期M、項(xiàng)目總壽命N、靜態(tài)投資回收期 Pt與內(nèi)部收益率IRR之間的關(guān)系。四。若現(xiàn)金流量圖如下,試求證當(dāng)n時(shí), I0 1 n 年Aic證明:因?yàn)樗杂忠驗(yàn)樗缘谒恼?多方案的比選一、例題【例】有4個(gè)方案互斥,現(xiàn)金流如下,試選擇最佳方案。ic=15。項(xiàng)目1234現(xiàn)金流(萬元)0

9、050008000-10000110年0140019002500解:因?yàn)?方案凈現(xiàn)值為零,故取2方案為基準(zhǔn)方案(NPV20 )。比較方案3與2,根據(jù)現(xiàn)金流量差額評(píng)價(jià)原則,應(yīng)有說明方案2優(yōu)于3。再比較方案2和4。說明方案4優(yōu)于2。因?yàn)榉桨?是最后一個(gè)方案,故4是最佳方案?!纠坑?個(gè)方案互斥,現(xiàn)金流如下,試選擇最佳方案。ic=15.項(xiàng)目1234現(xiàn)金流(萬元)00-5000800010000110年0140019002500解:同理,因?yàn)?方案凈現(xiàn)值為零,故取2方案為基準(zhǔn)方案。(1)比較方案3與2,根據(jù)現(xiàn)金流量差額評(píng)價(jià)原則,應(yīng)有得:說明方案2優(yōu)于3.(2)再比較方案2和4.得:說明方案4優(yōu)于2.因

10、為方案4是最后一個(gè)方案,故4是最佳方案?!纠?種具有相同功能的設(shè)備A、B、C、D,其使用壽命均為10年,殘值為0,初始投資和年經(jīng)營費(fèi)如下.若ic=10,試選擇最有利設(shè)備。4種設(shè)備的原始數(shù)據(jù)(單位:萬元)設(shè) 備ABCD初始投資30384550年經(jīng)營費(fèi)1817。714。713.2解:由于功能相同,故可只比較費(fèi)用;又因?yàn)楦鞣桨笁勖嗟龋WC了時(shí)間可比,故可利用凈現(xiàn)值指標(biāo)的對(duì)稱形式-費(fèi)用現(xiàn)值指標(biāo)PC選優(yōu)。判據(jù)是選擇諸方案中費(fèi)用現(xiàn)值最小者。解:所以,應(yīng)該選擇設(shè)備D。(2)經(jīng)濟(jì)性工學(xué)的解法第一步:按投資額由小到大排序后,先根據(jù)靜態(tài)數(shù)據(jù)淘汰無資格方案。單位:萬元設(shè)備投資I年經(jīng)營費(fèi)C無資格方案重算無資格方案

11、重算A3018B CB3817。7C4514。7D5013。2第二步:從剩余方案中比選最優(yōu)方案。本例中僅剩A、D兩種設(shè)備備選,若用IRR指標(biāo),則應(yīng)令代入數(shù)據(jù),則有故應(yīng)選擇設(shè)備D.【例】如果設(shè)備A、B、C、D的投資、收益數(shù)據(jù)如下表所示,各方案壽命均為無限大。 設(shè)備項(xiàng)目ABCD初始投資(萬元)20304050年凈收益(萬元)2。05。46.27.8試問:(1)若:ic10,應(yīng)選哪種設(shè)備? (2)ic在什么區(qū)間,選擇B設(shè)備最為有利?解:第一步,按投資額由小到大排序后,先根據(jù)靜態(tài)數(shù)據(jù)淘汰無資格方案。單位:萬元設(shè)備投資I年收益C無資格方案IRR排序A202。00。1AB305。40。340。1818C4

12、06。20。08CD507。80.160。1212因?yàn)?n-,(P/A ,i,)=1/i ,所以,由 NPVR(P/A ,IRR ,)I0 ,0 1 2 3 4 5 I(萬元)0>B1218B>Dic10IRRIRR排序圖可知,n時(shí)的IRRR/I。第二步:根據(jù)上表計(jì)算結(jié)果繪出排序圖.第三步:可根據(jù) IRRic,選優(yōu):(1)當(dāng)ic10時(shí),顯然IRR0B和 IRRB>D都符合標(biāo)準(zhǔn),因此應(yīng)選擇D設(shè)備.(2)根據(jù)上述準(zhǔn)則,12% ic 18%,應(yīng)選B設(shè)備.因?yàn)檫@是由B到D的增量投資的IRRB-D12< ic,不符合選中的標(biāo)準(zhǔn).也就是說,按經(jīng)濟(jì)性工學(xué)應(yīng)選擇IRR由大于ic轉(zhuǎn)變?yōu)樾?/p>

13、于ic之前的增量方案。如(1)中的BD,即D設(shè)備和(2)中的0-B,即B設(shè)備?!纠坑蠥、B兩種設(shè)備均可滿足使用要求,數(shù)據(jù)如下:設(shè)備投資I(萬元)每年凈收益(萬元)壽命(年)A10004004B20005306 若有吸引力的最低投資收益率MARR=10,試選擇一臺(tái)經(jīng)濟(jì)上有利的設(shè)備.1000400530年64100年2000AB解:A、B壽命期不同,其現(xiàn)金流如下:其最小公倍數(shù)為12年。0100010001000400400400年8541129200020000530530年61127AB因?yàn)镹PVANPVB',又因?yàn)锳'項(xiàng)目與A項(xiàng)目等效; B項(xiàng)目與B項(xiàng)目等效,故A項(xiàng)目優(yōu)于B項(xiàng)目

14、。【例】某廠為增加品種方案,考慮了兩種方案(產(chǎn)量相同,收入可忽略不計(jì)),假定ic=15,現(xiàn)金流如下:項(xiàng) 目AB初期投資(萬元)12501600年經(jīng)營成本(萬元)340300殘值(萬元)100160壽命(年)69100B1160009年160300612500A13406年LV解:畫出現(xiàn)金流量圖(1)第一種不承認(rèn)方案未使用價(jià)值.取6年為研究期:因?yàn)镻CA<PCB1,此時(shí)A方案優(yōu)于B方案。(2)預(yù)測方案未使用價(jià)值在研究期末的價(jià)值并作為現(xiàn)金流入量.(這種方法取決于對(duì)處理回收預(yù)測的準(zhǔn)確性。如果重估值有困難,一般采用回收固定資產(chǎn)余值。)因?yàn)镻CA>PCB2,所以B方案優(yōu)于A方案。二、練習(xí)一.

15、兩個(gè)互斥的投資方案A、B,基準(zhǔn)貼現(xiàn)率在什么范圍內(nèi)應(yīng)挑選方案A?在什么范圍內(nèi)應(yīng)挑選方案B?凈現(xiàn)金流量如下表:方案年末凈現(xiàn)金流量(元)01234A1000100350600850B-10001000200200200解:首先計(jì)算出A、B項(xiàng)目及A、B差額項(xiàng)目的內(nèi)部收益率. IRRA=23 IRRB=34%IRRA-B=13(NPVA=NPVB) 但由于這里A、B項(xiàng)目的投資相等,所以不能用前面的原理來選擇,即用投資多的項(xiàng)目減去投資少的項(xiàng)目,若此時(shí)的 IRRic,則投資多的項(xiàng)目優(yōu)于投資少的項(xiàng)目。我們可以通過畫圖的方式來選擇。BA0iNPV34%23%13%由上圖看出: 當(dāng) 時(shí),選A項(xiàng)目 當(dāng) 時(shí),選B項(xiàng)目

16、二。具有同樣功能的設(shè)備A、B,有關(guān)資料如下表;不計(jì)設(shè)備殘值,若兩臺(tái)設(shè)備的使用年限均為8年,貼現(xiàn)率為13。設(shè)備初始投資產(chǎn)品加工費(fèi)A20萬元8元/件B30萬元6元/件(1)年產(chǎn)量是多少時(shí),設(shè)備A有利?(2)若產(chǎn)量為13000件/年,貼現(xiàn)率 i在什麼范圍時(shí),A設(shè)備有利?(3)若產(chǎn)量為15000件/年,貼現(xiàn)率為13,使用年限為多長時(shí),A設(shè)備有利? 解:(1)設(shè)年產(chǎn)量為Q萬件,若A設(shè)備有利,則:解得: Q1.042(萬件) 此時(shí)選擇設(shè)備A有利。(2)設(shè)i=20,則不等式左邊=3。837設(shè)i=15,則不等式左邊=4。487由三角形比例關(guān)系,有:ic>19.93此時(shí)選擇設(shè)備A有利。(3)解得 n 4。

17、65(年)此時(shí)選擇設(shè)備A有利。三。有A、B、C、D四個(gè)互斥方案,壽命相同。有關(guān)資料如下:若ic=15%,應(yīng)選哪個(gè)方案? 方案(j)初始投資(I)(元)k=Ak=Bk=CA10000019%-B175000159C20000018%1723D250000261217%13解:選A為臨時(shí)最優(yōu)方案故,A優(yōu)于B故,C優(yōu)于A故,C優(yōu)于D一。有A、B、C、D四方案互斥,壽命為7年,現(xiàn)金流如下.試求ic在什麼范圍時(shí),B方案不僅可行而且最優(yōu)。 各方案現(xiàn)金流量 ( 單位:萬元)ABCD投 資2000300040005000凈收益50090011001380解:(1)凈現(xiàn)值法欲使B方案不僅可行而且最優(yōu),則有:即:

18、 有:當(dāng)ic=15當(dāng)ic=10 得ic>14。96當(dāng)ic=25 得14.96ic23.06% 當(dāng)ic=20 得ic23。062)差額內(nèi)部收益率法欲使B方案不僅可行而且最優(yōu),則有:對(duì)于方程1 當(dāng) r1=35,方程1左邊=3。009 當(dāng) r2=40,方程1左邊=94.8645對(duì)于方程2 當(dāng) r1=10,方程2左邊=-26.3162 當(dāng) r2=5%,方程2左邊=157。2746對(duì)于方程3 當(dāng) r1=15,方程3左邊=4.1604當(dāng) r2=10%,方程3左邊=4。8684對(duì)于方程4當(dāng) r1=25%,方程4左邊=3。1611 當(dāng) r2=20%,方程4左邊=3。6046聯(lián)立以上4個(gè)方程結(jié)果,有(3)

19、經(jīng)濟(jì)性工學(xué)解法設(shè)備投資I年收益R無資格方案重算無資格方案重算A2000500 A CB3000900C40001100D50001380由上表可淘汰A、C方案,故只需計(jì)算B、D方案。 或所以有思考:能否求出ic在什么范圍時(shí), A或者C方案不僅可行而且最優(yōu)。A或者C方案為無資格方案,無論ic在什么范圍都不可能成為最優(yōu)方案.二。如果有A、B、C、D四個(gè)互斥投資方案,壽命期為無窮大,其它數(shù)據(jù)如下: 方案ABCD投資 I(萬元)100200300400凈現(xiàn)金流量R(萬元)10364560(1)若ic=10,應(yīng)選哪個(gè)方案?(2)若希望B為最優(yōu)投資規(guī)模,ic應(yīng)調(diào)整在什麼范圍?解:(1)求各個(gè)方案的NPV

20、因?yàn)閴勖鼮闊o窮大,故NPV可表示如下;因?yàn)镹PVD最大,所以方案D最優(yōu).(2)若B為最優(yōu)規(guī)模,則得所以有解:采用淘汰無資格方案的方法 方案無資格方案重算無資格方案重算A0。1 A CB0.260。180.18C 0。09D0。150。12由上表看出,A、C是無資格方案。此時(shí)只需對(duì)B、D項(xiàng)目進(jìn)行比較。又由于壽命為無窮大,故有:所以有:iC0 BB D40012%18%0200iC=10%I(投資)繪出排序圖由上圖看出:當(dāng)12%ic18%時(shí),選擇B方案最經(jīng)濟(jì).三、例題【例】表所示6個(gè)項(xiàng)目獨(dú)立,壽命均為6年。 若:(1)ic=10,可投資Kmax=250萬元,選擇哪些項(xiàng)目? (2)投資在100萬以內(nèi)

21、, ic=10,投資每增加100萬, ic提高4個(gè)百分點(diǎn),這時(shí)應(yīng)選擇哪些項(xiàng)目?項(xiàng)目現(xiàn)金流(萬元)016A6018B-5511。9C-4515。2D8021.7E7528。3F7017若采用雙向排序均衡法,則過程如下:1。首先求各項(xiàng)目的內(nèi)部收益率(r) rA=20%; rB=8; rC=25; rD=16;rE=30; rF=12.2。排序并繪成圖,標(biāo)注限制線ic和Imax。7512%16%Imax=2504580556070FDic=10%AI(投資)r20%25%30%8%18012075038533026022%14%EC18%3。選優(yōu)(1)根據(jù)條件1,Imax=250萬元時(shí),可依次選項(xiàng)目

22、E、C、A,投資額為180萬元,剩余70萬元資金不夠項(xiàng)目D投資之用。由于項(xiàng)目的不可分割性,D項(xiàng)目不能被選中,但下一項(xiàng)目F可被選中,且投資為70萬元,至此,資金全部用完。因此,最終的最優(yōu)項(xiàng)目組合投資方案為投資(A、C、E、F)。(2)根據(jù)條件2可畫出上圖所示的一條變動(dòng)的i與r曲線相交于項(xiàng)目D,由于項(xiàng)目的不可分割性,只能投資于項(xiàng)目E、C、A。若按照R/I排序IRR/IE7528。30。38C4515。20。34A60180。30D8021.70。27F70170。24B5511。90。22計(jì)算得:IRRD16%,IRRF12%,IRRB8%DF6045ic=10%75AI(投資)IRR557080

23、180120750Imax=25038533026022%12%16%14%E18%BC8第五章 方案的不確定性分析一、例題【例53】 企業(yè)生產(chǎn)某種產(chǎn)品,設(shè)計(jì)年產(chǎn)量6000件,每件出廠價(jià)50元,企業(yè)固定開支為66000元/年,產(chǎn)品變動(dòng)成本為28元/件,求:(1)試計(jì)算企業(yè)的最大可能贏利。(2)試計(jì)算企業(yè)盈虧平衡時(shí)的產(chǎn)量。(3)企業(yè)要求年盈余5萬元時(shí),產(chǎn)量是多少?(4)若產(chǎn)品出廠價(jià)由50元下降到48元,若還要維持5萬元盈余,問應(yīng)銷售的量是多少?解:(1)企業(yè)的最大可能贏利:R6000(5028)-6600066000(元) (2)企業(yè)盈虧平衡時(shí)的產(chǎn)量: (3)企業(yè)要求年盈余5萬元時(shí)的產(chǎn)量:(4)

24、產(chǎn)品出廠價(jià)由50元下降到48元,若還要維持5萬元盈余應(yīng)銷售的量:【例】某企業(yè)一項(xiàng)投資方案的參數(shù)估計(jì)如下:項(xiàng)目投資壽命殘值年收入年支出折現(xiàn)率參數(shù)值10000元5年2000元5000元2200元8%試分析當(dāng)壽命、折現(xiàn)率和年支出中每改變一項(xiàng)時(shí),NPV的敏感性。解:NPV10000(5000-2200)(P/A,8,5)+2000(P/F,8,5)=2541(元)一次只改變一個(gè)參數(shù)值,NPV的敏感性分析結(jié)果如圖所示。-60% -40% -20% 0 20% 40% 60% 因素變化率NPV(元)年支出 折現(xiàn)率2541敏感性曲線圖壽命可以看出,NPV對(duì)壽命和年支出敏感,對(duì)折現(xiàn)率不敏感.【例】某項(xiàng)目擬投資

25、10000元,項(xiàng)目建成后5年內(nèi),每年末收益2500元,5年末回收殘值500元,ic8。試對(duì)其進(jìn)行敏感性分析,假定不確定因素為IP、S(每年末收益)、iC。解:首先求出正常情況下的項(xiàng)目凈現(xiàn)值NPV相對(duì)值法 (讓不確定因素變化正負(fù)10)IP+10時(shí),IP11000,NPV(8)519。88(元)IP-10時(shí),IP9000, NPV(8)2519.88(元)S +10時(shí),S 3080, NPV(8)2637。84(元)S 10%時(shí),S 2520, NPV(8)401.92(元)ic+10時(shí),ic8.8,NPV(8)1275。74(元)ic10%時(shí),ic7.2,NPV(8)1772。51(元)由上可看

26、出,收入S最敏感,IP次之,基準(zhǔn)收益率ic最次?!纠磕彻驹u(píng)價(jià)的某項(xiàng)目之可能的各年凈現(xiàn)金流量和該公司約定的CVd換算表如下,若ic=8,試求E(NPV)并判斷其可行性?,F(xiàn)金流量分布表CVd換算表年份(元)概率0-110001。0140000。350000.460000。3245000。460000。275000.4335000。2560000。585000。25d0.00-0。071.00.080.150.90。160。230.80。240。320。70。330.420。60。430。540。50.550。700。4解:第一步先求出各d,為此計(jì)算各年的E(Nt)再求各年的凈現(xiàn)金流量的 : ,

27、最后利用求出各年的CVt CV0 = 0 CV1 = 774.6/5000 = 0。15 CV2 = 1341。64/6000 = 0。22 CV3 = 1767。77/6000 = 0。29 第二步利用公式(4-5)可求出E(NPV)所以結(jié)論是:即便考慮到可能存在的風(fēng)險(xiǎn),項(xiàng)目還是可以接受的。【例】試計(jì)算上例中的NPV小于零的概率,并分析其可行性。解:因?yàn)樗杂忠驗(yàn)樗灾链?可以計(jì)算出期望凈現(xiàn)值相當(dāng)于項(xiàng)目現(xiàn)金流量標(biāo)準(zhǔn)差的倍數(shù)為:根據(jù)Z值,可從正態(tài)分布表中,查得項(xiàng)目凈現(xiàn)值小于零的概率Pb。NPVE(NPV)0Pb=0.01322.220經(jīng)查表:Pb=0。0132,即NPV0的概率僅為1。32,風(fēng)

28、險(xiǎn)很小?!纠磕稠?xiàng)目需投資20萬元,建設(shè)期1年。根據(jù)預(yù)測,項(xiàng)目生產(chǎn)期為2年,3年,4年和5年的概率分別為0。2、0。2、0。5和0.1;生產(chǎn)期年收入(每年相同)為5萬元、10萬元和12.5萬元的概率分別為0.3、0。5和0.2。若iC=10,計(jì)算該項(xiàng)目的E(NPV)和NPV 0的概率。解:由決策樹可計(jì)算出以下聯(lián)合概率、NPV、加權(quán)NPV,并最終計(jì)算出E(NPV)。序號(hào)聯(lián)合概率NPV加權(quán)NPV10.06-102930617620.0668779412730。15-37733-566040。039510-28550。1024042240460。1044259442670。2510635126588

29、80。05162799814090。0415402606100。041007794031110。1017839417839120.022489534979合計(jì):1.00E(NPV)=47967將上式NPV由小到大排序,求出NPV的累計(jì)概率 NPV(元)事件概率累計(jì)概率1029300。060。06687790。060.12377330。15項(xiàng)目投資風(fēng)險(xiǎn)圖0.20.40.60.81-200000-1000000100000200000300000凈現(xiàn)值累計(jì)概率0.27-240420。100.3795100。030。40154020。040。44442590。100。541007790。040.58

30、1063510。250。831627990.050。881783940。100。982489530。021。00由上表和圖可知,NPV0的累計(jì)概率在0。40和0.44之間,利用線性插值公式近似計(jì)算可求出NPV小于零的概率: P(NPV 0)=10.415=0。585計(jì)算結(jié)果表明,投資20萬元的項(xiàng)目期望NPV高達(dá)4。8萬元,但困難較大,因其NPV0的概率已高達(dá)0。415?!纠磕惩稑?biāo)單位經(jīng)研究決定參與某工程投標(biāo).經(jīng)造價(jià)工程師估價(jià),該工程成本為1500萬元,其中材料費(fèi)占60。擬議高、中、低三個(gè)報(bào)價(jià)方案的利潤分別為10%、7%、4,根據(jù)過去類似工程的投標(biāo)經(jīng)驗(yàn),相應(yīng)的中標(biāo)概率分別為0。3、0。6、0.

31、9.編制投標(biāo)文件的費(fèi)用為5萬元。該工程建設(shè)單位在招標(biāo)文件中明確規(guī)定采用固定總價(jià)合同。據(jù)估計(jì),在施工過程中材料費(fèi)可能平均上漲3,其發(fā)生的概率為0。4.問題:該投標(biāo)單位應(yīng)按哪個(gè)方案投標(biāo)?相應(yīng)的報(bào)價(jià)為多少?解:1。計(jì)算各投標(biāo)方案的利潤(1)投高標(biāo)材料不漲價(jià)時(shí)的利潤:1500×10=150萬元(2)投高標(biāo)材料漲價(jià)時(shí)的利潤:1501500×60%×3=123萬元(3)投中標(biāo)材料不漲價(jià)時(shí)的利潤:1500×7=105萬元(4)投中標(biāo)材料漲價(jià)時(shí)的利潤:1051500×60×3=78萬元(5)投低標(biāo)材料不漲價(jià)時(shí)的利潤:1500×4=60萬元

32、(6)投低標(biāo)材料漲價(jià)時(shí)的利潤:601500×60×3%=33萬元將結(jié)果列于下表:方案效果概率利潤(萬元)高標(biāo)好0.6150差0。4123中標(biāo)好0.6105差0。478低標(biāo)好0.660差0.433中低高1765234336078105-5123150-5-549.2中標(biāo)(0.3)好(0.6)差(0.4)不中標(biāo)(0.7)中標(biāo)(0.9)中標(biāo)(0.6)94.2139.2好(0.6)好(0.6)不中標(biāo)(0.4)不中標(biāo)(0.1)差(0.4)差(0.4)2。畫出決策樹,標(biāo)明各方案的概率和利潤。3.計(jì)算各機(jī)會(huì)點(diǎn)的期望值點(diǎn) 150×0。6+123×0。4=139。2(萬元

33、)點(diǎn) 139。2×0.3-5×0。7=38.26 (萬元)點(diǎn) 105×0.6+78×0.4=94.2 (萬元)點(diǎn) 94。2×0。6-5×0。4=54。52 (萬元)點(diǎn) 60×0。6+33×0。4=49。2 (萬元)點(diǎn) 49。2×0。95×0。1=43.78 (萬元)4。決策 因?yàn)辄c(diǎn)的期望利潤最大,故應(yīng)投中標(biāo). 相應(yīng)的報(bào)價(jià)為 1500×(1+7)+5=1610(萬元)二、練習(xí)一。某項(xiàng)目設(shè)計(jì)方案的年產(chǎn)量是15萬噸,每噸產(chǎn)品繳納稅金180元,年固定成本1500萬元,每噸產(chǎn)品的可變成本380元

34、。已知當(dāng)每噸產(chǎn)品的可變成本為500元時(shí),項(xiàng)目剛好盈虧平衡,求項(xiàng)目的BEP生產(chǎn)能力利用率,并判定項(xiàng)目的抗風(fēng)險(xiǎn)能力。解:由下式所以 P=780元/噸又由所以項(xiàng)目的抗風(fēng)險(xiǎn)能力較強(qiáng)二.若某項(xiàng)目的IRR隨投資的變化如下表,試求: 1。IRR對(duì)投資的敏感性曲線。 2.若iC=15%,投資由2000萬元增加到多少時(shí),項(xiàng)目變?yōu)椴豢尚校客顿Y(萬元)16001800200022002400IRR49%3725131IRR15-20 -10 0 10 20 I %解:1.畫出敏感性曲線:2000 I* 2200 I1315252.由比例關(guān)系所以,當(dāng), 項(xiàng)目變?yōu)椴豢尚腥?已知某投資項(xiàng)目的現(xiàn)金流如下表: t12341

35、5殘值NCFt(萬元)12001800300R=500200(1)若ic=10,試求NPV=?項(xiàng)目是否可行?(2)R為多少此項(xiàng)目由可行轉(zhuǎn)變?yōu)椴豢尚校蛴刹豢尚修D(zhuǎn)變?yōu)榭尚??這時(shí)的R叫什么=5002000 1 2 3 4 15 年解:首先畫出現(xiàn)金流量圖(1)所以,項(xiàng)目可行.(2)令NPV=0,有:解得:R=450。31(萬元)此時(shí)得R稱為轉(zhuǎn)換值或臨界值。四。某企業(yè)生產(chǎn)的某種產(chǎn)品在市場上供不應(yīng)求,因此該企業(yè)決定投資擴(kuò)建新廠。據(jù)研究分析,該產(chǎn)品10年后將升級(jí)換代,目前的主要競爭對(duì)手也可能擴(kuò)大生產(chǎn)規(guī)模,故提出以下三個(gè)擴(kuò)建方案:1。大規(guī)模擴(kuò)建新廠,需投資3億元。據(jù)估計(jì),該產(chǎn)品銷路

36、好時(shí),每年的凈現(xiàn)金流量為9000萬元;銷路差時(shí),每年的凈現(xiàn)金流量為3000萬元.2.小規(guī)模擴(kuò)建新廠,需投資1。4億元。據(jù)估計(jì)該產(chǎn)品銷路好時(shí),每年的凈現(xiàn)金流量為4000萬元;銷路差時(shí),每年的凈現(xiàn)金流量為3000萬元.3。先小規(guī)模擴(kuò)建新廠,3年后,若該產(chǎn)品銷路好時(shí)再?zèng)Q定是否再次擴(kuò)建.若再次擴(kuò)建,需投資2億元,其生產(chǎn)能力與方案1相同.據(jù)預(yù)測,在今后10年內(nèi),該產(chǎn)品銷路好的概率0。7,銷路差的概率為0。3?;鶞?zhǔn)折現(xiàn)率ic=10,不考慮建設(shè)期所持續(xù)的時(shí)間. 1。畫出決策樹。 2.試決定采用哪個(gè)方案擴(kuò)建.9000300040003000銷路好(0.7)900040003000銷路好(0.7)銷路差(0.3

37、)銷路差(0.3)銷路好(0.7)銷路差(0.3)擴(kuò)大開發(fā)不擴(kuò)大開發(fā)14241873511019小規(guī)模大規(guī)模先小后大前3年后7年45123解:根據(jù)背景資料所給出的條件畫出決策樹,標(biāo)明各方案的概率和凈現(xiàn)金流量,如圖所示。問題2解:計(jì)算圖中各機(jī)會(huì)點(diǎn)的期望值(將計(jì)算結(jié)果標(biāo)在各機(jī)會(huì)點(diǎn)的上方)點(diǎn):(9000×0。7+3000×0。3)×(P/A,10,10)30000=14241萬元點(diǎn):(4000×0。7+3000×0。3)×(P/A,10,10)14000=8735萬元第三年點(diǎn)4、5的決策:點(diǎn):9000 ×(P/A,10,7)200

38、00=23816萬元點(diǎn):4000 ×(P/A,10,7)=19474萬元對(duì)于決策點(diǎn),機(jī)會(huì)點(diǎn)的期望值大于機(jī)會(huì)點(diǎn)的期望值,因此應(yīng)采用3年后銷路好時(shí)再次擴(kuò)建的方案.機(jī)會(huì)點(diǎn)的計(jì)算比較復(fù)雜,包括以下的兩個(gè)方案:(1)銷路好(概率0。7)狀態(tài)下的前3年小規(guī)模擴(kuò)建,后7年再次擴(kuò)建;0 1 3 10 年14000238164000(2)銷路差(概率0。3)狀態(tài)下小規(guī)模擴(kuò)建持續(xù)十年.1400030000 1 10 年故機(jī)會(huì)點(diǎn)期望值為:4000 ×0.7×(P/A,10,3)+23812×0。7×(P/F,10%,3)+3000×0。3×(P/

39、A,10,10)14000 =11019萬元對(duì)于決策點(diǎn)的決策,需比較機(jī)會(huì)點(diǎn)、 的期望值,由于機(jī)會(huì)點(diǎn) 的期望值最大,故應(yīng)采用大規(guī)模擴(kuò)建新廠方案。五。某建設(shè)項(xiàng)目需要安裝一條自動(dòng)化生產(chǎn)線,現(xiàn)在有三種方案可供選擇。A方案:從國外引進(jìn)全套生產(chǎn)線,年固定成本為1350萬元,單位產(chǎn)品可變成本為1800元.B方案:僅從國外引進(jìn)主機(jī),國內(nèi)組裝生產(chǎn)線,年固定成本為950萬元,單位產(chǎn)品可變成本為2000元.C方案:采用國內(nèi)生產(chǎn)線,年固定成本為680萬元,單位產(chǎn)品可變成本為2300元。假設(shè)各條生產(chǎn)線的生產(chǎn)能力是相同的,試分析各種方案適用的生產(chǎn)規(guī)模。解:各方案的總成本(TC)均是產(chǎn)量Q的系數(shù),即: TCA=1350+0

40、.18Q TCB=950+0。20Q TCC=680+0。23Q因此,首先以Q為變量,做出三個(gè)方案的總成本線(TC線),如圖:QTCATCBTCCQ3Q1Q2成本(萬元)0從圖中可見,三條TC線分別兩兩相交于、三點(diǎn),則這三點(diǎn)就分別是相應(yīng)的兩個(gè)方案的盈虧平衡點(diǎn).其對(duì)應(yīng)的產(chǎn)量就是盈虧平衡產(chǎn)量.根據(jù)盈虧平衡點(diǎn)的定義分別計(jì)算出Q1和Q3:當(dāng)產(chǎn)量水平為Q1時(shí),TCB=TCC950+0。2Q1=680+0.23 Q1得:Q1=0。9(萬件)當(dāng)產(chǎn)量水平為Q3時(shí),TCA=TCB 1350+0.18Q3=950+0。20Q3得: Q3=2(萬件)由于各條生產(chǎn)線的生產(chǎn)能力是相同的,因此確定各方案適用的生產(chǎn)規(guī)模也就

41、是比較在各種生產(chǎn)規(guī)模下各個(gè)方案的成本情況。由上圖可知當(dāng)產(chǎn)量水平低于0。9萬件時(shí),以C方案為最經(jīng)濟(jì),當(dāng)產(chǎn)量水平在0。92萬件之間時(shí),以B方案為最佳,而當(dāng)產(chǎn)量水平高于2萬件時(shí),又以A方案最為合理.第六章 設(shè)備更新的經(jīng)濟(jì)分析一、例題【例】A設(shè)備投資10000元,使用年限為5年,有關(guān)數(shù)據(jù)如下,計(jì)算該設(shè)備的經(jīng)濟(jì)壽命。單位:元 T(年限)12345Ct(使用費(fèi)用)12001400160020002400Lt(殘值)60005000450038002900解:靜態(tài)求解過程 單位:元TI0-LTCAT1400012005200520025000260076003800355004200970032334620

42、06200124003100571008600157003140根據(jù)計(jì)算結(jié)果,設(shè)備使用第四年時(shí),年費(fèi)用最低,故其經(jīng)濟(jì)壽命為4年。【例】B設(shè)備投資20000元,使用年限為6年,有關(guān)數(shù)據(jù)見表。單位:元T(年限)123456Ct使用費(fèi)用150016001900230030004000Lt(殘值)13000110009000600040002000A設(shè)備投資10000元,使用年限為5年,有關(guān)數(shù)據(jù)見表。單位:元T(年限)12345Ct使用費(fèi)用12001400160020002400Lt(殘值)60005000450038002900已知設(shè)備B的效率是A設(shè)備的2倍,若該項(xiàng)目已用A設(shè)備服務(wù)了兩年,任務(wù)期為6

43、年,現(xiàn)擬用B設(shè)備更換,試選擇最佳更新時(shí)機(jī).解:(1)靜態(tài)求解過程單位:元TIA-LAT250002600760035500420097004620062001240057100860015700(2)NTIB-LBT41400073002130018250311000500016000177002900031001210018450170001500850019950由上述計(jì)算結(jié)果看出,A設(shè)備使用3年,B設(shè)備也使用3年時(shí),6年任務(wù)期內(nèi)的總費(fèi)用最低。即A設(shè)備再使用1年時(shí)應(yīng)該更新.【例】某企業(yè)急需M設(shè)備,其購置費(fèi)為20000元,可使用10年,期末殘值為2000元.這種設(shè)備也可以租到,每年初的租賃費(fèi)為3200元.運(yùn)行費(fèi)都是1500元/年。政府規(guī)定的所得稅稅率為33%,年末納稅。折舊采用直線法,ic=10。問該企業(yè)應(yīng)采用租賃方案,還是購置方案?解:用年費(fèi)用比較法,只比較差異部分.(1)企業(yè)如果購置該設(shè)備,其年購置費(fèi)ACA為:或年折舊D=(200002000)/10=1800(元)所以購置設(shè)備方案年費(fèi)用差異部分共計(jì)為:ACA=31291800×33=2535

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論