人教版初中數(shù)學(xué)公式、定理大全_第1頁
人教版初中數(shù)學(xué)公式、定理大全_第2頁
人教版初中數(shù)學(xué)公式、定理大全_第3頁
人教版初中數(shù)學(xué)公式、定理大全_第4頁
人教版初中數(shù)學(xué)公式、定理大全_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、初中數(shù)學(xué)公式、定理大全1、一元二次方程根的情況 = b2 4ac (前提必須化成一般形式 ax2+bx+c=0)當(dāng)> 0時,一元二次方程有 2個不相等的實數(shù)根當(dāng)= 0時,一元二次方程有 2個相等的實數(shù)根;當(dāng)< 0時,一元二次方程沒有實數(shù)根2、平行四邊形的性質(zhì)兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。平行四邊形的對邊相等并且平行,對角相等,鄰角互補。平行四邊形的對角線互相平分。菱形:一組鄰邊相等的平行四邊形是菱形領(lǐng)形的四條邊相等,對邊平行,兩條對角線互相垂直平分,每一組對角線 平分一組對角。判定條件:定義、對角線互相垂直的平行四邊形、四

2、條邊都相等的四邊形矩形與正方形有一個內(nèi)角是直角的平行四邊形叫做矩形。矩形的對角線相等且平分,四個角都是直角。對角線相等的平行四邊形是矩形。正方形具有平行四邊形,矩形,菱形的所有性質(zhì)。一組鄰邊相等的矩形是正方形,有一個角是直角的 菱形是正方形。多邊形: n 邊形的內(nèi)角和等于(n 2) 180°多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的外角和多邊形的外角和都等于360 度二、基本定理1、過兩點有且只有一條直線2、兩點之間線段最短3、同角或等角的補角相等4、同角或等角的余角相等5、過一點有且只有一條直線與

3、已知直線垂直 6、直線外一點與直線上各點連接的所有線段中,垂線段最短 7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行9、同位角相等,兩直線平行平行11、同旁內(nèi)角互補,兩直線平行 等13、兩直線平行,內(nèi)錯角相等 角互補15、定理三角形兩邊的和大于第三邊8、如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行10、內(nèi)錯角相等,兩直線12 、兩直線平行,同位角相14、兩直線平行,同旁內(nèi)16、推論三角形兩邊的差小于第三邊17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18、推論1 直角三角形的兩個銳角互余19、推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20、推論

4、3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21 、全等三角形的對應(yīng)邊、對應(yīng)角相等全等三角形的判定方法22、邊角邊公理(SAS有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23、角邊角公理(ASA有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24、推論(AAS有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25、邊邊邊公理(SS有三邊對應(yīng)相等的兩個三角形全等26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等角平分線的性質(zhì):27、定理1 在角的平分線上的點到這個角的兩邊的距離相等28、定理2 到一個角的兩邊的距離相等的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等

5、的所有點的集合等腰(邊)三角形的性質(zhì)30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31 、推論 1 等腰三角形頂角的平分線平分底邊并且垂直于底邊32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合(三線 合一)33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°等腰(邊)三角形的判定34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1 三個角都相等的三角形是等邊三角形36、推論2 有一個角等于60 °的等腰三角形是等邊三角形37、在直角三角形中,如果一個銳角等于30°那么

6、它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半。反之如果角形一邊上的中線等于這邊的一半,那么這個三角形是直角角形。線段垂直平分線的性質(zhì)39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41 、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1 關(guān)于某條直線對稱的兩個圖形是全等形43、定理2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44、定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應(yīng)點連線被

7、同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46、勾股定理直角三角形兩直角邊a、 b 的平方和、等于斜邊c 的平方,即a2+ b2=c247、勾股定理的逆定理如果三角形的三邊長a、 b、 c 有關(guān)系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360 °50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n2) X 18051 、推論任意多邊的外角和等于360 °平行四邊形的性質(zhì)52、平行四邊形性質(zhì)定理1平行四邊形的對角相等、鄰角互補53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等、對邊平行54、推論夾在兩條

8、平行線間的平行線段相等55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分 平行四邊形的判定定義:兩組對邊分別平行的四邊形是平行四邊形56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形矩形的性質(zhì)60、矩形性質(zhì)定理1 矩形的四個角都是直角,對邊平行且相等61 、矩形性質(zhì)定理2 矩形的對角線相等且互相平分矩形的判定 定義:有一個角是直角的平行四邊形是矩形1 有三個角是直角的四邊形是矩形2 對角線相等的平

9、行四邊形是矩形菱形的性質(zhì):62、矩形判定定理 63、矩形判定定理64、菱形性質(zhì)定理1 菱形的四條邊都相等,對邊平行對角相等65、菱形性質(zhì)定理2 菱形的對角線互相垂直平分,并且每一條對角線平分一組對角66、菱形面積對角線乘積的一半,即S= (axb) +2,也等于底x高菱形的判定定義:一組鄰邊相等的平行四邊形是菱形67、菱形判定定理1 四邊都相等的四邊形是菱形68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形正方形的性質(zhì)69、正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等,對邊平行70、正方形性質(zhì)定理2 正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角正方形的判定:方

10、法一:是矩形且一組鄰邊相等方法二:是菱形且有一個角是直角71 、定理1 關(guān)于中心對稱的兩個圖形是全等的72、定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱等腰梯形的性質(zhì)74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等等腰梯形的判定76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1 經(jīng)過梯

11、形一腰的中點與底平行的直線,必平分另一腰80、推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81 、三角形中位線定理三角形的中位線平行于第三邊并且等于它的一半82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半梯形的中位線長=(上底+下底):2梯形面積=中位線長x高86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例三角形相似的判定:90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91 、相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似三角形相似的性質(zhì)96、性質(zhì)定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論