二維梁單元的有限元分析_第1頁
二維梁單元的有限元分析_第2頁
二維梁單元的有限元分析_第3頁
二維梁單元的有限元分析_第4頁
二維梁單元的有限元分析_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、Problem Description: Determine the nodal deflections, reaction forces, and stress for the truss system shown below (E = 200GPa, A = 3250mm2) Important:        · Convert all dimensions and forces into SI units.· You can either build your model by

2、 using ABQUS/CAE or directly write your input file. Submit the input file according to the temp format.· Run the job twice by with or without considering geometric nonlinearity and do a comparison.· List the results of the analysis and plot the deformed shape.PART 1:Without considering geo

3、metric nonlinearity, we can get the deformed shape of 2D Truss Structure as follow : Fig 1 The deformed shape of 2D Truss Structure without geometric nonlinearityWe get the result of analysis of 2D Truss Structure without nonlinearity by using ABQUS/CAE. The reaction forces for truss system are summ

4、arized in table 1.Point numberRF. Magnitude(N)RF. RF1(N)RF. RF2(N)1300013188582233333200030004000500060007318498-188582256667Table 1 The reaction forces for truss system without geometric nonlinearity The displacements and the Mises stresses for truss system are showed in table 2.Point numberU. Magn

5、itude(m)U. U1(m)U. U2(m)S. Mises(Pa)1300.013E-33-188.582E-33-233.333E-3349.7391E+0623.00917E-031.51695E-03-2.59884E-0382.8975E+0635.37825E-03-298.416E-06-5.36996E-0334.1952E+0645.72896E-0324.868E-06-5.7289E-0347.664E+0655.79069E-03223.812E-06-5.78637E-0335.2315E+0663.25786E-03-1.61642E-03-2.82858E-0

6、391.1872E+067318.498E-33188.582E-33-5.36996E-0351.8117E+06Table 2 The Mises stress and displacement for truss system without geometric nonlinearityPRAT2:With considering geometric nonlinearity, we can get the deformed shape of 2D Truss Structure as follow :Fig 2 The deformed shape of 2D Truss Struct

7、ure with geometric nonlinearityThe reaction forces for truss system with geometric nonlinearity are summarized in table 3. Point numberRF. Magnitude(N)RF. RF1(N)RF. RF2(N)1299.881E+03188.372E+03233.333E+03200030004000500060007318.374E+03-188.372E+03256.667E+03Table 3 The reaction forces for truss sy

8、stem with geometric nonlinearityThe displacements and Mises stresses for truss system are showed in table 4.Point numberU. Magnitude(m)U. U1(m)U. U2(m)S. Mises(Pa)153.5032E-33-53.5031E-33-101.216E-3649.6786E+0623.01189E-031.51851E-03-2.60108E-0382.9515E+0635.38337E-03-299.721E-06-5.37502E-0334.2471E

9、+0645.73647E-0324.8903E-06-5.73642E-0347.6725E+0655.79542E-03225.597E-065.79103E-0335.2385E+0663.26007E-03-1.61749E-03-2.8305E-0391.235E+067296.734E-33148.798E-33-256.73E-3351.7433E+06Table 4 The Mises stress and displacements for truss system with geometric nonlinearityWe can find lots of differences between the results without considering geometric nonlinearity and the results with considering geometric nonlinearity. The largest difference of all is the displacement. There are distinctly exterior difference between Fig 1 and Fig 2. The result without considering geometric nonlinea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論