




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、直角三角形全等的條件教案 逸夫中學 魏寬鵬教學目標1已知斜邊和一直角邊會作直角三角形.2掌握“斜邊直角邊公理”,會熟練利用這個公理及一般三角形全等的判定方法判定直角三角形全等.3熟練使用“分析綜合法”探討解題思路.教學重點和難點“斜邊直角邊公理”的掌握和靈活運用.教學過程設計一、討論直角三角形全等的判定方法可用判定一般三角形全少的方法練習1 判斷以下各組直角三角形是否全等,為什么?(1)兩直角邊對應相等的兩個直角三角形;(2)一邊和一銳角對應相等的兩個直角三角形.分析:(1)判定兩直角三角形全等時,直角相等是一個很重要的隱含條件.由于直角三角形是特殊的三角形,所以一般三角形全等的四種判定方法對
2、直角三角形都適用.由于直角三角形與一般三角形相比增加了一個特殊條件直角,因此,判定直角三角形全等的條件可減弱到兩個,“SSS”對直角三角形來說條件多余.2探求判定直角三角形全等的特殊方法.(1)對直角三角形中的兩對對應元素進行分類,探求有無判定全等的其它方法.除練習1的(1)和(2)之外,還有以下兩種情況: 兩銳角對應相等; 斜邊和一直角邊對應相等.(2)對第句,由教師和學生手中的含30°的直角三角板可說明它不成立,因此,判定直角三角形全等仍然至少需要一邊對應相等.對第句,通過畫圖尋找答案.畫圖得出公理.例1 如圖3-80,已
3、知線段a,c(a<c),畫一個RtABC,使C=90°,一直角邊CB=a,斜邊AB=c.教師應注意啟發(fā)學生選擇合理的畫圖順序來確定三角形的三個頂點:畫直角確定頂點C在直角一邊上截取線段a確定B點以點B為圓心,線段c為半徑作弧與另一直角邊相交確定點A.說明:(1)教師按照教材所述,詳細板書畫法并作圖.()著重說明畫出的直角三角形存在且唯一,因此,可以作為判定公理,稱為“斜邊、直角邊公理”,簡寫為“HL”.4敘述公理,強調條件及格式.教師板書“HL公理”的內容,說明它實際上就是兩邊及其中一邊的對角對應相等,但所對的角是直角,所以它只對直角三角形適用,對一般三角形并不一定成立,因此,
4、在“HL公理”的使用過程中要突出直角三角形這個條件,對于圖3-81,在RtABC與RtABC二、應用舉例例2 已知:如圖3-82,在ABC與ABC中,CD和CD分別是高,并且AC=AC,CD=CD,ACB=ACB.求證:ABCABC.說明:請一名學生口述,教師糾正后板書正確過程.(投影)練習2 如圖3-83,AB=AC,CFAB于F,BEAC于E,CF與BE交于H.求證:(1)AH平分ABC;(2)CH=BH;(3)AHBC;(4)連結BC與AH的延長線交于D,圖中有多少對全等三角形?為什么?(5)交換“AB=AC”與“AH平分BAC”,以上命題是否成立?為什么?說明:(1)通過二次
5、全等證明所需結論,并培養(yǎng)學生逆向思維能力.(2)通過此題全面復習直角三角形全等的判定方法(SAS,AAS,ASA,HL).(投影)練習3 已知:如圖3-84,AB=AC,ADBC于D,DEAB于E,DFAC于F.求證:DE=DF.(投影)例3 求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等.說明:要求學生根據文字敘述畫圖,分析已知、未知條件,根據直角三角形的判定方法來證明兩次全等三、師生共同小結1一般三角形與直角三角形證明全等的方法有什么區(qū)別與聯(lián)系?2靈活選用幾種方法來證明兩個直角三角形全等,注意分析法與綜合法的使用四、作業(yè)課本第55頁第2,3,4題補充題:1如圖3-85,A,F(xiàn)和
6、B三點在一條直線上,CFAB于F, AFFH, CFFB求證: BEAC說明:利用三角形全等來說明兩直線的垂直關系2思考:兩邊及其中較長邊所對的角對應相等的兩個三角形是否全等?為什么?較短邊所對的角對應相等嗎?提示:(1)對較長邊所對的角按銳角、直角、鈍角三種情況來進行分類討論,結論成立可用尺規(guī)作圖作出符合條件的唯一確定的三角形.(2)對較短邊所對的角按銳角、直角、鈍角三種情況進行分類討論,發(fā)現(xiàn)由“大邊對大角”得知直角、鈍角時三角形不存在,而銳角時即為表31中“SSA”的反例圖形,三角形形狀不唯一.課堂教學設計說明本教學設計需1課時完成1練習1是在復習鞏固并運用一般三角形的四種判定方法判定直角
7、三角形全等的基礎上,讓學生總結規(guī)律:直角三角形只需再加兩個特定條件就能判定全等引導學生對兩個特定條件進行分類,引出對“斜邊、直角邊公理”的思考2教師也可采用第二種引入新課的方法如下:(1)復習一般三角形的四種判定方法(2)提問:SSA能否判定一般三角形全等?能否判定直角三角形全等?(3)教師用投影演示表31中“SSA”的反例圖形:分解出ABD與ABC;分別繞點A旋轉AD和AC使AB所對的角都變?yōu)橹苯牵?#160; 對比發(fā)現(xiàn),當兩邊及其中一邊(較短邊)所對的角為銳角時三角形形狀不唯一;但當兩邊及其中一邊(較長邊)所對的角為直角時,直角三角形形狀就唯一被確定(結合補充題2可對括號內邊、角對應關系理解得更清楚。)(4)猜想“SSA”可用來判定兩直角三角形全等,但不稱為“SSA”,而由邊角對應關系稱為“斜邊、直角邊”3練習2與補充題1實際上均是“三角形三條高交于一點”的特殊化形式,如果教師能看到這
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年摩托車導線項目可行性研究報告
- 2025至2030年圓形車刀項目投資價值分析報告
- 2025年鐵包頭項目投資可行性研究分析報告
- 2025至2030年中國色丁印花面料數(shù)據監(jiān)測研究報告
- 21 創(chuàng)造宣言2024-2025學年九年級語文上冊同步教學設計(河北專版)
- 大葉樟茶盤行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 2025年車載飲水機項目可行性研究報告
- 2025年薄型半固定電位器項目可行性研究報告
- 2025年襯聚四氟乙烯管件項目可行性研究報告
- 2025至2030年中國雙目立體顯微鏡數(shù)據監(jiān)測研究報告
- 4.2依法履行義務 教案 -2024-2025學年統(tǒng)編版道德與法治八年級下冊
- NB/T 11526-2024煤礦微震監(jiān)測系統(tǒng)通用技術條件
- 2025年福建長汀金龍稀土有限公司招聘筆試參考題庫含答案解析
- 文化差異下的教育國外的小學音樂教育方式探討
- 貴州省貴陽市普通中學2024-2025學年高二上學期期末監(jiān)測歷史試題(含答案)
- 公司安全事故隱患內部舉報、報告獎勵制度
- 云停車平臺商戶使用說明
- 醫(yī)院醫(yī)保月結算報表
- 中國農業(yè)銀行資金證明模板
- 教師如何做小課題研究(李海波)
- 確認民族成分申請書
評論
0/150
提交評論