




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、數(shù)學圓錐曲線總結(jié)1、圓錐曲線的兩個定義:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與|FF|不可忽視。若|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若|FF|,則軌跡不存在。若去掉定義中的絕對值則軌跡僅表示雙曲線的一支。(2)第二定義中要注意定點和定直線是相應的焦點和準線,且“點點距為分子、點線距為分母”,其商即是離心率。圓錐曲線的第二定義,給出了圓錐曲線上的點到焦點距離與此點到相
2、應準線距離間的關(guān)系,要善于運用第二定義對它們進行相互轉(zhuǎn)化。注意(1)在求解橢圓、雙曲線問題時,首先要判斷焦點位置,焦點F,F(xiàn)的位置,是橢圓、雙曲線的定位條件,它決定橢圓、雙曲線標準方程的類型,而方程中的兩個參數(shù),確定橢圓、雙曲線的形狀和大小,是橢圓、雙曲線的定形條件;在求解拋物線問題時,首先要判斷開口方向;(2)在橢圓中,最大,在雙曲線中,最大,。4.圓錐曲線的幾何性質(zhì): (1) 橢圓(以()為例):范圍:;焦點:兩個焦點;對稱性:兩條對稱軸,一個對稱中心(0,0),四個頂點,其中長軸長為2,短軸長為2;準線:兩條準線; 離心率:,橢圓,越小,橢圓越圓;越大,橢圓越扁。(2) (2)
3、雙曲線(以()為例):范圍:或;焦點:兩個焦點;對稱性:兩條對稱軸,一個對稱中心(0,0),兩個頂點,其中實軸長為2,虛軸長為2,特別地,當實軸和虛軸的長相等時,稱為等軸雙曲線,其方程可設為;準線:兩條準線; 離心率:,雙曲線,等軸雙曲線,越小,開口越小,越大,開口越大;兩條漸近線:。(3) 拋物線(以為例):范圍:;焦點:一個焦點,其中的幾何意義是:焦點到準線的距離;對稱性:一條對稱軸,沒有對稱中心,只有一個頂點(0,0);準線:一條準線; 離心率:,拋物線。5、點和橢圓()的關(guān)系:(1)點在橢圓外;(2)點在橢圓上1;(3)點在橢圓內(nèi) 6直線與圓錐曲線的位置關(guān)系: (1
4、) 相交:直線與橢圓相交; 直線與雙曲線相交,但直線與雙曲線相交不一定有,當直線與雙曲線的漸近線平行時,直線與雙曲線相交且只有一個交點,故是直線與雙曲線相交的充分條件,但不是必要條件;直線與拋物線相交,但直線與拋物線相交不一定有,當直線與拋物線的對稱軸平行時,直線與拋物線相交且只有一個交點,故也僅是直線與拋物線相交的充分條件,但不是必要條件。注意(1)直線與雙曲線、拋物線只有一個公共點時的位置關(guān)系有兩種情形:相切和相交。如果直線與雙曲線的漸近線平行時,直線與雙曲線相交,但只有一個交點;如果直線與拋物線的軸平行時,直線與拋物線相交,也只有一個交點; (2)過雙曲線1外一點的直線與雙曲線
5、只有一個公共點的情況如下:P點在兩條漸近線之間且不含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和分別與雙曲線兩支相切的兩條切線,共四條;P點在兩條漸近線之間且包含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和只與雙曲線一支相切的兩條切線,共四條;P在兩條漸近線上但非原點,只有兩條:一條是與另一漸近線平行的直線,一條是切線;P為原點時不存在這樣的直線; (2) 過拋物線外一點總有三條直線和拋物線有且只有一個公共點:兩條切線和一條平行于對稱軸的直線。7、焦半徑(圓錐曲線上的點P到焦點F的距離)的計算方法:利用圓錐曲線的第二定義,轉(zhuǎn)化到相應準線的距離,即焦半徑,其中表示P到與F所對應的準線的
6、距離。8、焦點三角形(橢圓或雙曲線上的一點與兩焦點所構(gòu)成的三角形)問題:常利用第一定義和正弦、余弦定理求解。設橢圓或雙曲線上的一點到兩焦點的距離分別為,焦點的面積為,則在橢圓中, ,且當即為短軸端點時,最大為;,當即為短軸端點時,的最大值為bc;對于雙曲線的焦點三角形有:;。9、拋物線中與焦點弦有關(guān)的一些幾何圖形的性質(zhì):(1)以過焦點的弦為直徑的圓和準線相切;(2)設AB為焦點弦, M為準線與x軸的交點,則AMFBMF;(3)設AB為焦點弦,A、B在準線上的射影分別為A,B,若P為AB的中點,則PAPB;(4)若AO的延長線交準線于C,則BC平行于x軸,反之,若過B點平行于x軸的直線交準線于C
7、點,則A,O,C三點共線。10、弦長公式:若直線與圓錐曲線相交于兩點A、B,且分別為A、B的橫坐標,則,若分別為A、B的縱坐標,則,若弦AB所在直線方程設為,則。特別地,焦點弦(過焦點的弦):焦點弦的弦長的計算,一般不用弦長公式計算,而是將焦點弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解。11、圓錐曲線的中點弦問題:遇到中點弦問題常用“韋達定理”或“點差法”求解。在橢圓中,以為中點的弦所在直線的斜率k=;在雙曲線中,以為中點的弦所在直線的斜率k=;在拋物線中,以為中點的弦所在直線的斜率k=。注意:因為是直線與圓錐曲線相交于兩點的必要條件,故在求解有關(guān)弦長、對稱問題時,務必別忘了檢驗!12重要結(jié)論:(1)雙曲線的漸近線方程為;(2)以為漸近線(即與雙曲線共漸近線)的雙曲線方程為為參數(shù),0)。如與雙曲線有共同的漸近線,且過點的雙曲線方程為_(答:)(3)中心在原點,坐標軸為對稱軸的橢圓、雙曲線方程可設為;(4)橢圓、雙曲線的通徑(過焦點且垂直于對稱軸的弦)為,焦準距(焦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀監(jiān)局 面試真題及答案
- 銀行面試時政押題真題及答案
- 商業(yè)美術(shù)設計師的職業(yè)素養(yǎng)比拼試題及答案
- 英語結(jié)構(gòu)面試真題及答案
- 影像崗位面試真題及答案
- 永州語文面試真題及答案
- 合格知己測試題及答案
- 2025汽車買賣合同范本格式
- 紡織品市場前景分析試題及答案
- 廣告設計師考試實務題目解析試題及答案
- 2024年《BIM技術(shù)介紹》課件
- 核心素養(yǎng)視域下小學道德與法治生活化教學策略探究
- 花鍵計算公式DIN5480
- 人教版八年級下《生命.生態(tài).安全》教案
- 有理數(shù)的加減混合運算教學設計 人教版
- 中職學生心理健康教育專題講座
- 2024年湖南衡陽八中直選生綜合能力測試物理試題打印版
- 江蘇省南京市秦淮區(qū)2023-2024學年八年級下學期歷史期末測試卷
- 2024年甘肅省中考語文試題卷(含答案)
- 中央2024年文化和旅游部恭王府博物館應屆生招聘筆試上岸歷年典型考題與考點剖析附帶答案詳解
- 勞動教育智慧樹知到期末考試答案章節(jié)答案2024年同濟大學
評論
0/150
提交評論