2018高考數(shù)學(xué)真題導(dǎo)數(shù)專題_第1頁(yè)
2018高考數(shù)學(xué)真題導(dǎo)數(shù)專題_第2頁(yè)
2018高考數(shù)學(xué)真題導(dǎo)數(shù)專題_第3頁(yè)
2018高考數(shù)學(xué)真題導(dǎo)數(shù)專題_第4頁(yè)
2018高考數(shù)學(xué)真題導(dǎo)數(shù)專題_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 WORD格式整理版2017年高考真題導(dǎo)數(shù)專題一解答題(共12小題)1已知函數(shù)f(x)=ae2x+(a2)exx(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍2已知函數(shù)f(x)=ax2axxlnx,且f(x)0(1)求a;(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e2f(x0)223已知函數(shù)f(x)=x1alnx(1)若 f(x)0,求a的值;(2)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,(1+)(1+)(1+)m,求m的最小值4已知函數(shù)f(x)=x3+ax2+bx+1(a0,bR)有極值,且導(dǎo)函數(shù)f(x)的極值點(diǎn)是f(x)的零點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)(

2、1)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;(2)證明:b23a;(3)若f(x),f(x)這兩個(gè)函數(shù)的所有極值之和不小于,求a的取值范圍5設(shè)函數(shù)f(x)=(1x2)ex(1)討論f(x)的單調(diào)性;(2)當(dāng)x0時(shí),f(x)ax+1,求a的取值范圍6已知函數(shù)f(x)=(x)ex(x)(1)求f(x)的導(dǎo)函數(shù);(2)求f(x)在區(qū)間,+)上的取值范圍7已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosxsinx+2x2),其中e2.17828是自然對(duì)數(shù)的底數(shù)()求曲線y=f(x)在點(diǎn)(,f()處的切線方程;()令h(x)=g (x)a f(x)(aR),討論h(x)的單調(diào)性并判斷有無(wú)極值,有

3、極值時(shí)求出極值8已知函數(shù)f(x)=excosxx(1)求曲線y=f(x)在點(diǎn)(0,f(0)處的切線方程;(2)求函數(shù)f(x)在區(qū)間0,上的最大值和最小值9設(shè)aZ,已知定義在R上的函數(shù)f(x)=2x4+3x33x26x+a在區(qū)間(1,2)內(nèi)有一個(gè)零點(diǎn)x0,g(x)為f(x)的導(dǎo)函數(shù)()求g(x)的單調(diào)區(qū)間;()設(shè)m1,x0)(x0,2,函數(shù)h(x)=g(x)(mx0)f(m),求證:h(m)h(x0)0;()求證:存在大于0的常數(shù)A,使得對(duì)于任意的正整數(shù)p,q,且1,x0)(x0,2,滿足|x0|10已知函數(shù)f(x)=x3ax2,aR,(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(3,f(3)處的切

4、線方程;(2)設(shè)函數(shù)g(x)=f(x)+(xa)cosxsinx,討論g(x)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值11設(shè)a,bR,|a|1已知函數(shù)f(x)=x36x23a(a4)x+b,g(x)=exf(x)()求f(x)的單調(diào)區(qū)間;()已知函數(shù)y=g(x)和y=ex的圖象在公共點(diǎn)(x0,y0)處有相同的切線,(i)求證:f(x)在x=x0處的導(dǎo)數(shù)等于0;(ii)若關(guān)于x的不等式g(x)ex在區(qū)間x01,x0+1上恒成立,求b的取值范圍12已知函數(shù) f(x)=ex(exa)a2x(1)討論 f(x)的單調(diào)性;(2)若f(x)0,求a的取值范圍2017年高考真題導(dǎo)數(shù)專題參考答案與試題解析一解

5、答題(共12小題)1(2017新課標(biāo))已知函數(shù)f(x)=ae2x+(a2)exx(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍【解答】解:(1)由f(x)=ae2x+(a2)exx,求導(dǎo)f(x)=2ae2x+(a2)ex1,當(dāng)a=0時(shí),f(x)=2ex10,當(dāng)xR,f(x)單調(diào)遞減,當(dāng)a0時(shí),f(x)=(2ex+1)(aex1)=2a(ex+)(ex),令f(x)=0,解得:x=ln,當(dāng)f(x)0,解得:xln,當(dāng)f(x)0,解得:xln,x(,ln)時(shí),f(x)單調(diào)遞減,x(ln,+)單調(diào)遞增;當(dāng)a0時(shí),f(x)=2a(ex+)(ex)0,恒成立,當(dāng)xR,f(x)單調(diào)

6、遞減,綜上可知:當(dāng)a0時(shí),f(x)在R單調(diào)減函數(shù),當(dāng)a0時(shí),f(x)在(,ln)是減函數(shù),在(ln,+)是增函數(shù);(2)若a0時(shí),由(1)可知:f(x)最多有一個(gè)零點(diǎn),當(dāng)a0時(shí),f(x)=ae2x+(a2)exx,當(dāng)x時(shí),e2x0,ex0,當(dāng)x時(shí),f(x)+,當(dāng)x,e2x+,且遠(yuǎn)遠(yuǎn)大于ex和x,當(dāng)x,f(x)+,函數(shù)有兩個(gè)零點(diǎn),f(x)的最小值小于0即可,由f(x)在(,ln)是減函數(shù),在(ln,+)是增函數(shù),f(x)min=f(ln)=a()+(a2)ln0,1ln0,即ln+10,設(shè)t=,則g(t)=lnt+t1,(t0),求導(dǎo)g(t)=+1,由g(1)=0,t=1,解得:0a1,a的取值

7、范圍(0,1)方法二:(1)由f(x)=ae2x+(a2)exx,求導(dǎo)f(x)=2ae2x+(a2)ex1,當(dāng)a=0時(shí),f(x)=2ex10,當(dāng)xR,f(x)單調(diào)遞減,當(dāng)a0時(shí),f(x)=(2ex+1)(aex1)=2a(ex+)(ex),令f(x)=0,解得:x=lna,當(dāng)f(x)0,解得:xlna,當(dāng)f(x)0,解得:xlna,x(,lna)時(shí),f(x)單調(diào)遞減,x(lna,+)單調(diào)遞增;當(dāng)a0時(shí),f(x)=2a(ex+)(ex)0,恒成立,當(dāng)xR,f(x)單調(diào)遞減,綜上可知:當(dāng)a0時(shí),f(x)在R單調(diào)減函數(shù),當(dāng)a0時(shí),f(x)在(,lna)是減函數(shù),在(lna,+)是增函數(shù);(2)若a0

8、時(shí),由(1)可知:f(x)最多有一個(gè)零點(diǎn),當(dāng)a0時(shí),由(1)可知:當(dāng)x=lna時(shí),f(x)取得最小值,f(x)min=f(lna)=1ln,當(dāng)a=1,時(shí),f(lna)=0,故f(x)只有一個(gè)零點(diǎn),當(dāng)a(1,+)時(shí),由1ln0,即f(lna)0,故f(x)沒(méi)有零點(diǎn),當(dāng)a(0,1)時(shí),1ln0,f(lna)0,由f(2)=ae4+(a2)e2+22e2+20,故f(x)在(,lna)有一個(gè)零點(diǎn),假設(shè)存在正整數(shù)n0,滿足n0ln(1),則f(n0)=(a+a2)n0n0n00,由ln(1)lna,因此在(lna,+)有一個(gè)零點(diǎn)a的取值范圍(0,1)2(2017新課標(biāo))已知函數(shù)f(x)=ax2axxl

9、nx,且f(x)0(1)求a;(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e2f(x0)22【解答】(1)解:因?yàn)閒(x)=ax2axxlnx=x(axalnx)(x0),則f(x)0等價(jià)于h(x)=axalnx0,求導(dǎo)可知h(x)=a則當(dāng)a0時(shí)h(x)0,即y=h(x)在(0,+)上單調(diào)遞減,所以當(dāng)x01時(shí),h(x0)h(1)=0,矛盾,故a0因?yàn)楫?dāng)0x時(shí)h(x)0、當(dāng)x時(shí)h(x)0,所以h(x)min=h(),又因?yàn)閔(1)=aaln1=0,所以=1,解得a=1;(2)證明:由(1)可知f(x)=x2xxlnx,f(x)=2x2lnx,令f(x)=0,可得2x2lnx=0,記t(x)=2

10、x2lnx,則t(x)=2,令t(x)=0,解得:x=,所以t(x)在區(qū)間(0,)上單調(diào)遞減,在(,+)上單調(diào)遞增,所以t(x)min=t()=ln210,從而t(x)=0有解,即f(x)=0存在兩根x0,x2,且不妨設(shè)f(x)在(0,x0)上為正、在(x0,x2)上為負(fù)、在(x2,+)上為正,所以f(x)必存在唯一極大值點(diǎn)x0,且2x02lnx0=0,所以f(x0)=x0x0lnx0=x0+2x02=x0,由x0可知f(x0)(x0)max=+=;由f()0可知x0,所以f(x)在(0,x0)上單調(diào)遞增,在(x0,)上單調(diào)遞減,所以f(x0)f()=;綜上所述,f(x)存在唯一的極大值點(diǎn)x0

11、,且e2f(x0)223(2017新課標(biāo))已知函數(shù)f(x)=x1alnx(1)若 f(x)0,求a的值;(2)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,(1+)(1+)(1+)m,求m的最小值【解答】解:(1)因?yàn)楹瘮?shù)f(x)=x1alnx,x0,所以f(x)=1=,且f(1)=0所以當(dāng)a0時(shí)f(x)0恒成立,此時(shí)y=f(x)在(0,+)上單調(diào)遞增,這與f(x)0矛盾;當(dāng)a0時(shí)令f(x)=0,解得x=a,所以y=f(x)在(0,a)上單調(diào)遞減,在(a,+)上單調(diào)遞增,即f(x)min=f(a),又因?yàn)閒(x)min=f(a)0,所以a=1;(2)由(1)可知當(dāng)a=1時(shí)f(x)=x1lnx0,即lnxx1

12、,所以ln(x+1)x當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),所以ln(1+),kN*一方面,ln(1+)+ln(1+)+ln(1+)+=11,即(1+)(1+)(1+)e;另一方面,(1+)(1+)(1+)(1+)(1+)(1+)=2;從而當(dāng)n3時(shí),(1+)(1+)(1+)(2,e),因?yàn)閙為整數(shù),且對(duì)于任意正整數(shù)n,(1+)(1+)(1+)m成立,所以m的最小值為34(2017江蘇)已知函數(shù)f(x)=x3+ax2+bx+1(a0,bR)有極值,且導(dǎo)函數(shù)f(x)的極值點(diǎn)是f(x)的零點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;(2)證明:b23a;(3)若f(x)

13、,f(x)這兩個(gè)函數(shù)的所有極值之和不小于,求a的取值范圍【解答】(1)解:因?yàn)閒(x)=x3+ax2+bx+1,所以g(x)=f(x)=3x2+2ax+b,g(x)=6x+2a,令g(x)=0,解得x=由于當(dāng)x時(shí)g(x)0,g(x)=f(x)單調(diào)遞增;當(dāng)x時(shí)g(x)0,g(x)=f(x)單調(diào)遞減;所以f(x)的極小值點(diǎn)為x=,由于導(dǎo)函數(shù)f(x)的極值點(diǎn)是原函數(shù)f(x)的零點(diǎn),所以f()=0,即+1=0,所以b=+(a0)因?yàn)閒(x)=x3+ax2+bx+1(a0,bR)有極值,所以f(x)=3x2+2ax+b=0的實(shí)根,所以4a212b0,即a2+0,解得a3,所以b=+(a3)(2)證明:由

14、(1)可知h(a)=b23a=+=(4a327)(a327),由于a3,所以h(a)0,即b23a;(3)解:由(1)可知f(x)的極小值為f()=b,設(shè)x1,x2是y=f(x)的兩個(gè)極值點(diǎn),則x1+x2=,x1x2=,所以f(x1)+f(x2)=+a(+)+b(x1+x2)+2=(x1+x2)(x1+x2)23x1x2+a(x1+x2)22x1x2+b(x1+x2)+2=+2,又因?yàn)閒(x),f(x)這兩個(gè)函數(shù)的所有極值之和不小于,所以b+2=,因?yàn)閍3,所以2a363a540,所以2a(a236)+9(a6)0,所以(a6)(2a2+12a+9)0,由于a3時(shí)2a2+12a+90,所以a6

15、0,解得a6,所以a的取值范圍是(3,65(2017新課標(biāo))設(shè)函數(shù)f(x)=(1x2)ex(1)討論f(x)的單調(diào)性;(2)當(dāng)x0時(shí),f(x)ax+1,求a的取值范圍【解答】解:(1)因?yàn)閒(x)=(1x2)ex,xR,所以f(x)=(12xx2)ex,令f(x)=0可知x=1,當(dāng)x1或x1+時(shí)f(x)0,當(dāng)1x1+時(shí)f(x)0,所以f(x)在(,1),(1+,+)上單調(diào)遞減,在(1,1+)上單調(diào)遞增;(2)由題可知f(x)=(1x)(1+x)ex下面對(duì)a的范圍進(jìn)行討論:當(dāng)a1時(shí),設(shè)函數(shù)h(x)=(1x)ex,則h(x)=xex0(x0),因此h(x)在0,+)上單調(diào)遞減,又因?yàn)閔(0)=1,

16、所以h(x)1,所以f(x)=(1x)h(x)x+1ax+1;當(dāng)0a1時(shí),設(shè)函數(shù)g(x)=exx1,則g(x)=ex10(x0),所以g(x)在0,+)上單調(diào)遞增,又g(0)=101=0,所以exx+1因?yàn)楫?dāng)0x1時(shí)f(x)(1x)(1+x)2,所以(1x)(1+x)2ax1=x(1axx2),取x0=(0,1),則(1x0)(1+x0)2ax01=0,所以f(x0)ax0+1,矛盾;當(dāng)a0時(shí),取x0=(0,1),則f(x0)(1x0)(1+x0)2=1ax0+1,矛盾;綜上所述,a的取值范圍是1,+)6(2017浙江)已知函數(shù)f(x)=(x)ex(x)(1)求f(x)的導(dǎo)函數(shù);(2)求f(x

17、)在區(qū)間,+)上的取值范圍【解答】解:(1)函數(shù)f(x)=(x)ex(x),導(dǎo)數(shù)f(x)=(12)ex(x)ex=(1x+)ex=(1x)(1)ex;(2)由f(x)的導(dǎo)數(shù)f(x)=(1x)(1)ex,可得f(x)=0時(shí),x=1或,當(dāng)x1時(shí),f(x)0,f(x)遞減;當(dāng)1x時(shí),f(x)0,f(x)遞增;當(dāng)x時(shí),f(x)0,f(x)遞減,且xx22x1(x1)20,則f(x)0由f()=e,f(1)=0,f()=e,即有f(x)的最大值為e,最小值為f(1)=0則f(x)在區(qū)間,+)上的取值范圍是0,e7(2017山東)已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosxsinx+2x2

18、),其中e2.17828是自然對(duì)數(shù)的底數(shù)()求曲線y=f(x)在點(diǎn)(,f()處的切線方程;()令h(x)=g (x)a f(x)(aR),討論h(x)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值【解答】解:(I)f()=22f(x)=2x2sinx,f()=2曲線y=f(x)在點(diǎn)(,f()處的切線方程為:y(22)=2(x)化為:2xy22=0(II)h(x)=g (x)a f(x)=ex(cosxsinx+2x2)a(x2+2cosx)h(x)=ex(cosxsinx+2x2)+ex(sinxcosx+2)a(2x2sinx)=2(xsinx)(exa)=2(xsinx)(exelna)令u(x

19、)=xsinx,則u(x)=1cosx0,函數(shù)u(x)在R上單調(diào)遞增u(0)=0,x0時(shí),u(x)0;x0時(shí),u(x)0(1)a0時(shí),exa0,x0時(shí),h(x)0,函數(shù)h(x)在(0,+)單調(diào)遞增;x0時(shí),h(x)0,函數(shù)h(x)在(,0)單調(diào)遞減x=0時(shí),函數(shù)h(x)取得極小值,h(0)=12a(2)a0時(shí),令h(x)=2(xsinx)(exelna)=0解得x1=lna,x2=00a1時(shí),x(,lna)時(shí),exelna0,h(x)0,函數(shù)h(x)單調(diào)遞增;x(lna,0)時(shí),exelna0,h(x)0,函數(shù)h(x)單調(diào)遞減;x(0,+)時(shí),exelna0,h(x)0,函數(shù)h(x)單調(diào)遞增當(dāng)

20、x=0時(shí),函數(shù)h(x)取得極小值,h(0)=2a1當(dāng)x=lna時(shí),函數(shù)h(x)取得極大值,h(lna)=aln2a2lna+sin(lna)+cos(lna)+2當(dāng)a=1時(shí),lna=0,xR時(shí),h(x)0,函數(shù)h(x)在R上單調(diào)遞增1a時(shí),lna0,x(,0)時(shí),exelna0,h(x)0,函數(shù)h(x)單調(diào)遞增;x(0,lna)時(shí),exelna0,h(x)0,函數(shù)h(x)單調(diào)遞減;x(lna,+)時(shí),exelna0,h(x)0,函數(shù)h(x)單調(diào)遞增當(dāng)x=0時(shí),函數(shù)h(x)取得極大值,h(0)=2a1當(dāng)x=lna時(shí),函數(shù)h(x)取得極小值,h(lna)=aln2a2lna+sin(lna)+co

21、s(lna)+2綜上所述:a0時(shí),函數(shù)h(x)在(0,+)單調(diào)遞增;x0時(shí),函數(shù)h(x)在(,0)單調(diào)遞減x=0時(shí),函數(shù)h(x)取得極小值,h(0)=12a0a1時(shí),函數(shù)h(x)在x(,lna)是單調(diào)遞增;函數(shù)h(x)在x(lna,0)上單調(diào)遞減當(dāng)x=0時(shí),函數(shù)h(x)取得極小值,h(0)=2a1當(dāng)x=lna時(shí),函數(shù)h(x)取得極大值,h(lna)=aln2a2lna+sin(lna)+cos(lna)+2當(dāng)a=1時(shí),lna=0,函數(shù)h(x)在R上單調(diào)遞增a1時(shí),函數(shù)h(x)在(,0),(lna,+)上單調(diào)遞增;函數(shù)h(x)在(0,lna)上單調(diào)遞減當(dāng)x=0時(shí),函數(shù)h(x)取得極大值,h(0)

22、=2a1當(dāng)x=lna時(shí),函數(shù)h(x)取得極小值,h(lna)=aln2a2lna+sin(lna)+cos(lna)+28(2017北京)已知函數(shù)f(x)=excosxx(1)求曲線y=f(x)在點(diǎn)(0,f(0)處的切線方程;(2)求函數(shù)f(x)在區(qū)間0,上的最大值和最小值【解答】解:(1)函數(shù)f(x)=excosxx的導(dǎo)數(shù)為f(x)=ex(cosxsinx)1,可得曲線y=f(x)在點(diǎn)(0,f(0)處的切線斜率為k=e0(cos0sin0)1=0,切點(diǎn)為(0,e0cos00),即為(0,1),曲線y=f(x)在點(diǎn)(0,f(0)處的切線方程為y=1;(2)函數(shù)f(x)=excosxx的導(dǎo)數(shù)為f

23、(x)=ex(cosxsinx)1,令g(x)=ex(cosxsinx)1,則g(x)的導(dǎo)數(shù)為g(x)=ex(cosxsinxsinxcosx)=2exsinx,當(dāng)x0,可得g(x)=2exsinx0,即有g(shù)(x)在0,遞減,可得g(x)g(0)=0,則f(x)在0,遞減,即有函數(shù)f(x)在區(qū)間0,上的最大值為f(0)=e0cos00=1;最小值為f()=ecos=9(2017天津)設(shè)aZ,已知定義在R上的函數(shù)f(x)=2x4+3x33x26x+a在區(qū)間(1,2)內(nèi)有一個(gè)零點(diǎn)x0,g(x)為f(x)的導(dǎo)函數(shù)()求g(x)的單調(diào)區(qū)間;()設(shè)m1,x0)(x0,2,函數(shù)h(x)=g(x)(mx0)

24、f(m),求證:h(m)h(x0)0;()求證:存在大于0的常數(shù)A,使得對(duì)于任意的正整數(shù)p,q,且1,x0)(x0,2,滿足|x0|【解答】()解:由f(x)=2x4+3x33x26x+a,可得g(x)=f(x)=8x3+9x26x6,進(jìn)而可得g(x)=24x2+18x6令g(x)=0,解得x=1,或x=當(dāng)x變化時(shí),g(x),g(x)的變化情況如下表:x(,1)(1,)(,+)g(x)+g(x)所以,g(x)的單調(diào)遞增區(qū)間是(,1),(,+),單調(diào)遞減區(qū)間是(1,)()證明:由h(x)=g(x)(mx0)f(m),得h(m)=g(m)(mx0)f(m),h(x0)=g(x0)(mx0)f(m)

25、令函數(shù)H1(x)=g(x)(xx0)f(x),則H1(x)=g(x)(xx0)由()知,當(dāng)x1,2時(shí),g(x)0,故當(dāng)x1,x0)時(shí),H1(x)0,H1(x)單調(diào)遞減;當(dāng)x(x0,2時(shí),H1(x)0,H1(x)單調(diào)遞增因此,當(dāng)x1,x0)(x0,2時(shí),H1(x)H1(x0)=f(x0)=0,可得H1(m)0即h(m)0,令函數(shù)H2(x)=g(x0)(xx0)f(x),則H2(x)=g(x0)g(x)由()知,g(x)在1,2上單調(diào)遞增,故當(dāng)x1,x0)時(shí),H2(x)0,H2(x)單調(diào)遞增;當(dāng)x(x0,2時(shí),H2(x)0,H2(x)單調(diào)遞減因此,當(dāng)x1,x0)(x0,2時(shí),H2(x)H2(x0)

26、=0,可得得H2(m)0即h(x0)0,所以,h(m)h(x0)0()對(duì)于任意的正整數(shù)p,q,且,令m=,函數(shù)h(x)=g(x)(mx0)f(m)由()知,當(dāng)m1,x0)時(shí),h(x)在區(qū)間(m,x0)內(nèi)有零點(diǎn);當(dāng)m(x0,2時(shí),h(x)在區(qū)間(x0,m)內(nèi)有零點(diǎn)所以h(x)在(1,2)內(nèi)至少有一個(gè)零點(diǎn),不妨設(shè)為x1,則h(x1)=g(x1)(x0)f()=0由()知g(x)在1,2上單調(diào)遞增,故0g(1)g(x1)g(2),于是|x0|=因?yàn)楫?dāng)x1,2時(shí),g(x)0,故f(x)在1,2上單調(diào)遞增,所以f(x)在區(qū)間1,2上除x0外沒(méi)有其他的零點(diǎn),而x0,故f()0又因?yàn)閜,q,a均為整數(shù),所以

27、|2p4+3p3q3p2q26pq3+aq4|是正整數(shù),從而|2p4+3p3q3p2q26pq3+aq4|1所以|x0|所以,只要取A=g(2),就有|x0|10(2017山東)已知函數(shù)f(x)=x3ax2,aR,(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(3,f(3)處的切線方程;(2)設(shè)函數(shù)g(x)=f(x)+(xa)cosxsinx,討論g(x)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值【解答】解:(1)當(dāng)a=2時(shí),f(x)=x3x2,f(x)=x22x,k=f(3)=96=3,f(3)=279=0,曲線y=f(x)在點(diǎn)(3,f(3)處的切線方程y=3(x3),即3xy9=0(2)函數(shù)g(x

28、)=f(x)+(xa)cosxsinx=x3ax2+(xa)cosxsinx,g(x)=(xa)(xsinx),令g(x)=0,解得x=a,或x=0,若a0時(shí),當(dāng)x0時(shí),g(x)0恒成立,故g(x)在(,0)上單調(diào)遞增,當(dāng)xa時(shí),g(x)0恒成立,故g(x)在(a,+)上單調(diào)遞增,當(dāng)0xa時(shí),g(x)0恒成立,故g(x)在(0,a)上單調(diào)遞減,當(dāng)x=a時(shí),函數(shù)有極小值,極小值為g(a)=a3sina當(dāng)x=0時(shí),有極大值,極大值為g(0)=a,若a0時(shí),當(dāng)x0時(shí),g(x)0恒成立,故g(x)在(,0)上單調(diào)遞增,當(dāng)xa時(shí),g(x)0恒成立,故g(x)在(,a)上單調(diào)遞增,當(dāng)ax0時(shí),g(x)0恒

29、成立,故g(x)在(a,0)上單調(diào)遞減,當(dāng)x=a時(shí),函數(shù)有極大值,極大值為g(a)=a3sina當(dāng)x=0時(shí),有極小值,極小值為g(0)=a當(dāng)a=0時(shí),g(x)=x(x+sinx),當(dāng)x0時(shí),g(x)0恒成立,故g(x)在(0,+)上單調(diào)遞增,當(dāng)x0時(shí),g(x)0恒成立,故g(x)在(,0)上單調(diào)遞增,g(x)在R上單調(diào)遞增,無(wú)極值11(2017天津)設(shè)a,bR,|a|1已知函數(shù)f(x)=x36x23a(a4)x+b,g(x)=exf(x)()求f(x)的單調(diào)區(qū)間;()已知函數(shù)y=g(x)和y=ex的圖象在公共點(diǎn)(x0,y0)處有相同的切線,(i)求證:f(x)在x=x0處的導(dǎo)數(shù)等于0;(ii)若關(guān)于x的不等式g(x)ex在區(qū)間x01,x0+1上恒成立,求b的取值范圍【解答】()解:由f(x)=x36x23a(a4)x+b,可得f(x)=3x212x3a(a4)=3(xa)(x(4a),令f(x)=0,解得x=a,或x=4a由|a|1,得a4a當(dāng)x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論