15排列、組合、二項(xiàng)式定理、概1_第1頁
15排列、組合、二項(xiàng)式定理、概1_第2頁
15排列、組合、二項(xiàng)式定理、概1_第3頁
15排列、組合、二項(xiàng)式定理、概1_第4頁
15排列、組合、二項(xiàng)式定理、概1_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第15講 排列組合二項(xiàng)式定理和概率一、知識(shí)整合二、考試要求:1掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題.2理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題.3理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題.4掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題.5了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義.6了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率.7了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件

2、的概率.8會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.、隨機(jī)事件的概率例1 某商業(yè)銀行為儲(chǔ)戶提供的密碼有0,1,2,9中的6個(gè)數(shù)字組成.(1)某人隨意按下6個(gè)數(shù)字,按對(duì)自己的儲(chǔ)蓄卡的密碼的概率是多少?(2)某人忘記了自己儲(chǔ)蓄卡的第6位數(shù)字,隨意按下一個(gè)數(shù)字進(jìn)行試驗(yàn),按對(duì)自己的密碼的概率是多少?解 (1)儲(chǔ)蓄卡上的數(shù)字是可以重復(fù)的,每一個(gè)6位密碼上的每一個(gè)數(shù)字都有0,1,2,9這10種,正確的結(jié)果有1種,其概率為,隨意按下6個(gè)數(shù)字相當(dāng)于隨意按下個(gè),隨意按下6個(gè)數(shù)字相當(dāng)于隨意按下個(gè)密碼之一,其概率是.(2)以該人記憶自己的儲(chǔ)蓄卡上的密碼在前5個(gè)正確的前提下,隨意按下一個(gè)數(shù)字,等可能性的結(jié)果為

3、0,1,2,9這10種,正確的結(jié)果有1種,其概率為.例2 一個(gè)口袋內(nèi)有m個(gè)白球和n個(gè)黑球,從中任取3個(gè)球,這3個(gè)球恰好是2白1黑的概率是多少?(用組合數(shù)表示)解 設(shè)事件I是“從m個(gè)白球和n個(gè)黑球中任選3個(gè)球”,要對(duì)應(yīng)集合I1,事件A是“從m個(gè)白球中任選2個(gè)球,從n個(gè)黑球中任選一個(gè)球”,本題是等可能性事件問題,且Card(I1)= ,于是P(A)=.、互斥事件有一個(gè)發(fā)生的概率例3在20件產(chǎn)品中有15件正品,5件次品,從中任取3件,求:(1)恰有1件次品的概率;(2)至少有1件次品的概率.解 (1)從20件產(chǎn)品中任取3件的取法有,其中恰有1件次品的取法為。恰有一件次品的概率P=.(2)法一 從20

4、件產(chǎn)品中任取3件,其中恰有1件次品為事件A1,恰有2件次品為事件A2,3件全是次品為事件A3,則它們的概率P(A1)= =,而事件A1、A2、A3彼此互斥,因此3件中至少有1件次品的概率P(A1+A2+A3)=P(A1)+P(A2)+P(A3)= .法二 記從20件產(chǎn)品中任取3件,3件全是正品為事件A,那么任取3件,至少有1件次品為,根據(jù)對(duì)立事件的概率加法公式P()=例4 1副撲克牌有紅桃、黑桃、梅花、方塊4種花色,每種13張,共52張,從1副洗好的牌中任取4張,求4張中至少有3張黑桃的概率.解 從52張牌中任取4張,有種取法.“4張中至少有3張黑桃”,可分為“恰有3張黑桃”和“4張全是黑桃”

5、,共有種取法注 研究至少情況時(shí),分類要清楚。、相互獨(dú)立事件同時(shí)發(fā)生的概率例5 獵人在距離100米處射擊一野兔,其命中率為0.5,如果第一次射擊未中,則獵人進(jìn)行第二次射擊,但距離150米. 如果第二次射擊又未中,則獵人進(jìn)行第三次射擊,并且在發(fā)射瞬間距離為200米. 已知獵人的命中概率與距離的平方成反比,求獵人命中野兔的概率.解 記三次射擊依次為事件A,B,C,其中,由,求得k=5000。,命中野兔的概率為例6 要制造一種機(jī)器零件,甲機(jī)床廢品率為0.05,而乙機(jī)床廢品率為0.1,而它們的生產(chǎn)是獨(dú)立的,從它們制造的產(chǎn)品中,分別任意抽取一件,求:(1)其中至少有一件廢品的概率; (2)其中至多有一件廢

6、品的概率. 解: 設(shè)事件A為“從甲機(jī)床抽得的一件是廢品”;B為“從乙機(jī)床抽得的一件是廢品”.則P(A)=0.05, P(B)=0.1,(1)至少有一件廢品的概率(2)至多有一件廢品的概率、概率內(nèi)容的新概念較多,本課時(shí)就學(xué)生易犯錯(cuò)誤作如下歸納總結(jié):類型一 “非等可能”與“等可能”混同例1 擲兩枚骰子,求所得的點(diǎn)數(shù)之和為6的概率錯(cuò)解 擲兩枚骰子出現(xiàn)的點(diǎn)數(shù)之和2,3,4,12共11種基本事件,所以概率為P=剖析 以上11種基本事件不是等可能的,如點(diǎn)數(shù)和2只有(1,1),而點(diǎn)數(shù)之和為6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5種事實(shí)上,擲兩枚骰子共有36種基本事件,且是等可能的,

7、所以“所得點(diǎn)數(shù)之和為6”的概率為P=類型二 “互斥”與“對(duì)立”混同例2 把紅、黑、白、藍(lán)4張紙牌隨機(jī)地分給甲、乙、丙、丁4個(gè)人,每個(gè)人分得1張,事件“甲分得紅牌”與“乙分得紅牌”是( ) A對(duì)立事件 B不可能事件 C互斥但不對(duì)立事件 D以上均不對(duì)錯(cuò)解 A剖析 本題錯(cuò)誤的原因在于把“互斥”與“對(duì)立”混同,二者的聯(lián)系與區(qū)別主要體現(xiàn)在 : (1)兩事件對(duì)立,必定互斥,但互斥未必對(duì)立;(2)互斥概念適用于多個(gè)事件,但對(duì)立概念只適用于兩個(gè)事件;(3)兩個(gè)事件互斥只表明這兩個(gè)事件不能同時(shí)發(fā)生,即至多只能發(fā)生其中一個(gè),但可以都不發(fā)生;而兩事件對(duì)立則表示它們有且僅有一個(gè)發(fā)生 事件“甲分得紅牌”與“乙分得紅牌”

8、是不能同時(shí)發(fā)生的兩個(gè)事件,這兩個(gè)事件可能恰有一個(gè)發(fā)生,一個(gè)不發(fā)生,可能兩個(gè)都不發(fā)生,所以應(yīng)選C類型三 “互斥”與“獨(dú)立”混同例3 甲投籃命中率為O8,乙投籃命中率為0.7,每人投3次,兩人恰好都命中2次的概率是多少?錯(cuò)解 設(shè)“甲恰好投中兩次”為事件A,“乙恰好投中兩次”為事件B,則兩人都恰好投中兩次為事件A+B,P(A+B)=P(A)+P(B): 剖析 本題錯(cuò)誤的原因是把相互獨(dú)立同時(shí)發(fā)生的事件當(dāng)成互斥事件來考慮,將兩人都恰好投中2次理解為“甲恰好投中兩次”與“乙恰好投中兩次”的和互斥事件是指兩個(gè)事件不可能同時(shí)發(fā)生;兩事件相互獨(dú)立是指一個(gè)事件的發(fā)生與否對(duì)另一個(gè)事件發(fā)生與否沒有影響,它們雖然都描繪

9、了兩個(gè)事件間的關(guān)系,但所描繪的關(guān)系是根本不同解: 設(shè)“甲恰好投中兩次”為事件A,“乙恰好投中兩次”為事件B,且A,B相互獨(dú)立,則兩人都恰好投中兩次為事件A·B,于是P(A·B)=P(A)×P(B)= 0.169四、高考題選講1 甲、乙二人參加普法知識(shí)競賽,共有10個(gè)不同的題目,其中選擇題6個(gè),判斷題4個(gè),甲、乙二人依次各抽一題.()甲抽到選擇題、乙抽到判斷題的概率是多少?()甲、乙二人中至少有一人抽到選擇題的概率是多少?(2000年新課程卷)2 如圖,用A、B、C三類不同的元件連接成兩個(gè)系統(tǒng)N1、N2.當(dāng)元件A、B、C都正常工作時(shí),系統(tǒng)N1正常工作;當(dāng)元件A正常工

10、作且元件B、C至少有一個(gè)正常工作時(shí),系統(tǒng)N2正常工作.已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90.分別求系統(tǒng)N1、N2正常工作的概率P1、P2. (2001年新課程卷)3 某單位6個(gè)員工借助互聯(lián)網(wǎng)開展工作,每個(gè)員工上網(wǎng)的概率都是0.5(相互獨(dú)立).()求至少3人同時(shí)上網(wǎng)的概率;()至少幾人同時(shí)上網(wǎng)的概率小于0.3?(2002年新課程卷)4 有三種產(chǎn)品,合格率分別是0.90,0.95和0.95,各抽取一件進(jìn)行檢驗(yàn).()求恰有一件不合格的概率;()求至少有兩件不合格的概率.(精確到0.001) (2003年新課程卷)5. 從10位同學(xué)(其中6女,4男)中隨機(jī)選出3位參加測驗(yàn)

11、.每位女同學(xué)能通過測驗(yàn)的概率均為,每位男同學(xué)能通過測驗(yàn)的概率均為.試求:()選出的3位同學(xué)中,至少有一位男同學(xué)的概率;()10位同學(xué)中的女同學(xué)甲和男同學(xué)乙同時(shí)被選中且通過測驗(yàn)的概率. (2004年全國卷)解:本小題主要考查組合,概率等基本概念,獨(dú)立事件和互斥事件的概率以及運(yùn)用概率知識(shí)解決實(shí)際問題的能力,滿分12分.解:()隨機(jī)選出的3位同學(xué)中,至少有一位男同學(xué)的概率為 1;6分()甲、乙被選中且能通過測驗(yàn)的概率為 ;12分6. 已知8支球隊(duì)中有3支弱隊(duì),以抽簽方式將這8支球隊(duì)分為A、B兩組,每組4支.求:()A、B兩組中有一組恰有兩支弱隊(duì)的概率;()A組中至少有兩支弱隊(duì)的概率. (2004年全

12、國卷)解:()解法一:三支弱隊(duì)在同一組的概率為 故有一組恰有兩支弱隊(duì)的概率為解法二:有一組恰有兩支弱隊(duì)的概率()解法一:A組中至少有兩支弱隊(duì)的概率 解法二:A、B兩組有一組至少有兩支弱隊(duì)的概率為1,由于對(duì)A組和B組來說,至少有兩支弱隊(duì)的概率是相同的,所以A組中至少有兩支弱隊(duì)的概率為7.某同學(xué)參加科普知識(shí)競賽,需回答3個(gè)問題.競賽規(guī)則規(guī)定:答對(duì)第一、二、三問題分別得100分、100分、200分,答錯(cuò)得零分.假設(shè)這名同學(xué)答對(duì)第一、二、三個(gè)問題的概率分別為0.8、0.7、0.6,且各題答對(duì)與否相互之間沒有影響.()求這名同學(xué)得300分的概率;()求這名同學(xué)至少得300分的概率. (2004年全國卷)

13、8. 從4名男生和2名女生中任選3人參加演講比賽.()求所選3人都是男生的概率;()求所選3人中恰有1名女生的概率;()求所選3人中至少有1名女生的概率. (2004年天津卷)9. 某地區(qū)有5個(gè)工廠,由于用電緊缺,規(guī)定每個(gè)工廠在一周內(nèi)必須選擇某一天停電(選哪一天是等可能的).假定工廠之間的選擇互不影響.()求5個(gè)工廠均選擇星期日停電的概率;()求至少有兩個(gè)工廠選擇同一天停電的概率. (2004年浙江卷)10. 甲、乙兩人參加一次英語口語考試,已知在備選的10道試題中,甲能答對(duì)其中的6題,乙能答對(duì)其中的8題.規(guī)定每次考試都從備選題中隨機(jī)抽出3題進(jìn)行測試,至少答對(duì)2題才算合格.()分別求甲、乙兩人

14、考試合格的概率;()求甲、乙兩人至少有一人考試合格的概率. (2004年福建卷)11. 甲、乙、丙三臺(tái)機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺(tái)機(jī)床加工的零件都是一等品的概率為.()分別求甲、乙、丙三臺(tái)機(jī)床各自加工零件是一等品的概率;()從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概率. (2004年湖南卷)12.為防止某突發(fā)事件發(fā)生,有甲、乙、丙、丁四種相互獨(dú)立的預(yù)防措施可供采用,單獨(dú)采用甲、乙、丙、丁預(yù)防措施后此突發(fā)事件不發(fā)生的概率(記為P)和所需費(fèi)用

15、如下:預(yù)防措施甲乙丙丁P0.90.80.70.6費(fèi)用(萬元)90603010預(yù)防方案可單獨(dú)采用一種預(yù)防措施或聯(lián)合采用幾種預(yù)防措施,在總費(fèi)用不超過120萬元的前提下,請(qǐng)確定一個(gè)預(yù)防方案,使得此突發(fā)事件不發(fā)生的概率最大.(2004年湖北卷)解:方案1:單獨(dú)采用一種預(yù)防措施的費(fèi)用均不超過120萬元.由表可知,采用甲措施,可使此突發(fā)事件不發(fā)生的概率最大,其概率為0.9.方案2:聯(lián)合采用兩種預(yù)防措施,費(fèi)用不超過120萬元,由表可知.聯(lián)合甲、丙兩種預(yù)防措施可使此突發(fā)事件不發(fā)生的概率最大,其概率為1(10.9)(10.7)=0.97.方法3:聯(lián)合采用三種預(yù)防措施,費(fèi)用不超過120萬元,故只能聯(lián)合乙、丙、丁三

16、種預(yù)防措施,此時(shí)突發(fā)事件不發(fā)生的概率為1(10.8)(10.7)(10.6)=10.024=0.976.綜合上述三種預(yù)防方案可知,在總費(fèi)用不超過120萬元的前提下,聯(lián)合使用乙、丙、丁三種預(yù)防措施可使此突發(fā)事件不發(fā)生的概率最大.13. 設(shè)甲、乙、丙三人每次射擊命中目標(biāo)的概率分別為0.7、0.6和0.5.()三人各向目標(biāo)射擊一次,求至少有一人命中目標(biāo)的概率及恰有兩人命中目標(biāo)概率;()若甲單獨(dú)向目標(biāo)射擊三次,求他恰好命中兩次的概率. (2004年重慶卷)14從數(shù)字1,2,3,4,5,中,隨機(jī)抽取3個(gè)數(shù)字(允許重復(fù))組成一個(gè)三位數(shù),其各位數(shù)字之和等于9的概率為( D )ABCD15(本小題滿分12分)

17、一接待中心有A、B、C、D四部熱線電話,已知某一時(shí)刻電話A、B占線的概率均為0.5,電話C、D占線的概率均為0.4,各部電話是否占線相互之間沒有影響.假設(shè)該時(shí)刻有部電話占線.試求隨機(jī)變量的概率分布和它的期望.解:本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望等概念.考查運(yùn)用概率知識(shí)解決實(shí)際問題的能力.滿分12分.解:P(=0)=0.52×0.62=0.09. P(=1)= ×0.52×0.62+ ×0.52×0.4×0.6=0.3 P(=2)= ×0.52×0.62+×0.52×0.4×

18、0.6+ ×0.52×0.42=0.37. P(=3)= ×0.52×0.4×0.6+×0.52×0.42=0.2 P(=4)= 0.52×0.42=0.04于是得到隨機(jī)變量的概率分布列為:01234P0.090.30.370.20.04所以E=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.16從1,2,9這九個(gè)數(shù)中,隨機(jī)抽取3個(gè)不同的數(shù),則這3個(gè)數(shù)的和為偶數(shù)的概率是(C )ABCD17在由數(shù)字1,2,3,4,5組成的所有沒有重復(fù)數(shù)字的5位數(shù)中,大于23145且小于435

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論