




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、.初中數學知識點全面總結根本知識、數與代數A、數與式:1、有理數有理數:整數正整數/0/負整數分數正分數/負分數數軸:畫一條程度直線,在直線上取一點表示0原點,選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸。任何一個有理數都可以用數軸上的一個點來表示。假如兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點間隔 相等。數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。絕對值:在數軸上,一個數所對應的點與原點的間隔 叫做該數的絕對值。正數的絕對值是他的本
2、身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。有理數的運算:加法:同號相加,取一樣的符號,把絕對值相加。異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。一個數與0相加不變。減法:減去一個數,等于加上這個數的相反數。乘法:兩數相乘,同號得正,異號得負,絕對值相乘。任何數與0相乘得0。乘積為1的兩個有理數互為倒數。除法:除以一個數等于乘以一個數的倒數。0不能作除數。乘方:求N個一樣因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數?;旌享樞颍合人愠朔ǎ偎愠顺?,最后算加減,有括號要先算括號里的。2、
3、實數無理數:無限不循環(huán)小數叫無理數平方根:假如一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。假如一個數X的平方等于A,那么這個數X就叫做A的平方根。一個正數有2個平方根/0的平方根為0/負數沒有平方根。求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。立方根:假如一個數X的立方等于A,那么這個數X就叫做A的立方根。正數的立方根是正數、0的立方根是0、負數的立方根是負數。求一個數A的立方根的運算叫開立方,其中A叫做被開方數。實數:實數分有理數和無理數。在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。每一個實數都可以在數軸上的一個點來
4、表示。3、代數式代數式:單獨一個數或者一個字母也是代數式。合并同類項:所含字母一樣,并且一樣字母的指數也一樣的項,叫做同類項。把同類項合并成一項就叫做合并同類項。在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。4、整式與分式整式:數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。一個單項式中,所有字母的指數和叫做這個單項式的次數。一個多項式中,次數最高的項的次數叫做這個多項式的次數。整式運算:加減運算時,假如遇到括號先去括號,再合并同類項。冪的運算:AM+AN=AM+NAMN=AMNA/BN=AN/BN 除法一樣。整式的乘法:單項式與單項式相乘,把他
5、們的系數,一樣字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。公式兩條:平方差公式/完全平方公式整式的除法:單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,那么連同他的指數一起作為商的一個因式。多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、
6、十字相乘法。分式:整式A除以整式B,假如除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數。加減法:同分母分式相加減,分母不變,把分子相加減。異分母的分式先通分,化為同分母的分式,再加減。分式方程:分母中含有未知數的方程叫分式方程。使方程的分母為0的解稱為原方程的增根。方程與不等式1、方程與方程組一元一次方程:在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。等式兩邊同時加
7、上或減去或乘以或除以不為0一個代數式,所得結果仍是等式。解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。合適一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程1一元二次方程的二次函數的關系大家已經學過二次函數即拋物線了,對他也有很深的理解,好似解法
8、,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那假如在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了2一元二次方程的解法大家知道,二次函數有頂點式-b/2a,4ac-b2/4a,這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解1配方法利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解2分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候
9、也一樣,利用這點,把方程化為幾個乘積的形式去解3公式法這方法也可以是在解一元二次方程的萬能方法了,方程的根X1=-b+b2-4ac/2a,X2=-b-b2-4ac/2a3解一元二次方程的步驟:1配方法的步驟:先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式2分解因式法的步驟:把方程右邊化為0,然后看看是否能用提取公因式,公式法這里指的是分解因式中的公式法或十字相乘,假如可以,就可以化為乘積的形式3公式法就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4.韋達定理利用韋達定理去理解,韋達定理就是在
10、一元二次方程中,二根之和=-b/a,二根之積=c/a也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5一元一次方程根的情況利用根的判別式去理解,根的判別式可在書面上可以寫為“,讀作“diao ta,而=b2-4ac,這里可以分為3種情況:I當0時,一元二次方程有2個不相等的實數根;II當=0時,一元二次方程有2個一樣的實數根;III當0時,一元二次方程沒有實數根在這里,學到高中就會知道,這里有2個虛數根2、不等式與不等式組不等式:用符號,=,號連接的式子叫不等式。不等式的兩邊都加上或減去同一個整式,不等號的方向不變。不等式的兩邊都
11、乘以或者除以一個正數,不等號方向不變。不等式的兩邊都乘以或除以同一個負數,不等號方向相反。不等式的解集:能使不等式成立的未知數的值,叫做不等式的解。一個含有未知數的不等式的所有解,組成這個不等式的解集。求不等式解集的過程叫做解不等式。一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。一元一次不等式組:關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。求不等式組解集的過程,叫做解不等式組。一元一次不等式的符號方向:在一元一次不等式中,不像等式那樣,
12、等號是不變的,他是隨著你加或乘的運算改變。在不等式中,假如加上同一個數或加上一個正數,不等式符號不改向;例如:AB,A+CB+C在不等式中,假如減去同一個數或加上一個負數,不等式符號不改向;例如:AB,A-CB-C在不等式中,假如乘以同一個正數,不等號不改向;例如:AB,A*CB*CC0在不等式中,假如乘以同一個負數,不等號改向;例如:AB,A*C假如不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,假如出現了,那么不等式乘以的數就不等為0,否那么不等式不成立;3、函數變量:因變量,自變量。在用圖象表示變量之間的關系時,通常用程度方向的數軸上
13、的點自變量,用豎直方向的數軸上的點表示因變量。一次函數:假設兩個變量X,Y間的關系式可以表示成Y=KX+BB為常數,K不等于0的形式,那么稱Y是X的一次函數。當B=0時,稱Y是X的正比例函數。一次函數的圖象:把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。正比例函數Y=KX的圖象是經過原點的一條直線。在一次函數中,當K0,BO,那么經234象限;當K0,B0時,那么經124象限;當K0,B0時,那么經134象限;當K0,B0時,那么經123象限。當K0時,Y的值隨X值的增大而增大,當X0時,Y的值隨X值的增
14、大而減少??臻g與圖形A、圖形的認識1、點,線,面點,線,面:圖形是由點,線,面構成的。面與面相交得線,線與線相交得點。點動成線,線動成面,面動成體。展開與折疊:在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀一樣,側面的形狀都是長方體。N棱柱就是底面圖形有N條邊的棱柱。截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形?; ⑸刃危河梢粭l弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。圓可以分割成假設干個扇形。角線:線段有兩個端點。
15、將線段向一個方向無限延長就形成了射線。射線只有一個端點。將線段的兩端無限延長就形成了直線。直線沒有端點。經過兩點有且只有一條直線。比較長短:兩點之間的所有連線中,線段最短。兩點之間線段的長度,叫做這兩點之間的間隔 。角的度量與表示:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。一度的1/60是一分,一分的1/60是一秒。角的比較:角也可以看成是由一條射線繞著他的端點旋轉而成的。一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平
16、分線。平行:同一平面內,不相交的兩條直線叫做平行線。經過直線外一點,有且只有一條直線與這條直線平行。假如兩條直線都與第3條直線平行,那么這兩條直線互相平行。垂直:假如兩條直線相交成直角,那么這兩條直線互相垂直?;ハ啻怪钡膬蓷l直線的交點叫做垂足。平面內,過一點有且只有一條直線與直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后關于畫法,后面會講一定要把線段穿出2點。垂直平分線定理:性質定理:在垂直平分線上的點到該線段兩端點的間隔 相
17、等;斷定定理:到線段2端點間隔 相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊間隔 相等的點性質定理:角平分線上的點到該角兩邊的間隔 相等斷定定理:到角的兩邊間隔 相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形性質:正方形具有平行四邊形、菱形、矩形的一切性質斷定:1、對角線相等的菱形2、鄰邊相等的矩形根本方法1、配方法所謂配方,就是把一個解析式利用恒等變形的方法,
18、把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用非常非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。2、因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的根底,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。3、換元法換元
19、法是數學中一個非常重要而且應用非常廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。4、判別式法與韋達定理一元二次方程ax2+bx+c=0a、b、c屬于R,a0根的判別,=b2-4ac,不僅用來斷定根的性質,而且作為一種解題方法,在代數式變形,解方程組,解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了一元二次方程的一個根,求另一根;兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等5
20、、待定系數法在解數學問題時,假設先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。6、構造法在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程組、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相浸透,有利于問題的解決。7、反證法反證法是一
21、種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否認相反的假設,到達肯定原命題正確的一種方法。反證法可以分為歸謬反證法結論的反面只有一種與窮舉反證法結論的反面不只一種。用反證法證明一個命題的步驟,大體上分為:1反設;2歸謬;3結論。反設是反證法的根底,為了正確地作出反設,掌握一些常用的互為否認的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大小于、不大小于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有n一1個;至多有一個、至少有兩個;唯一、至少有兩個。歸謬是反證法的關鍵,導出
22、矛盾的過程沒有固定的形式,但必須從反設出發(fā),否那么推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與條件矛盾;與的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把和未知各量用面積公式聯絡起來,通過運算到達求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只
23、需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點浸透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。幾何變換包括:1平移;2旋轉;3對稱。10、客觀性題的解題方法選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構
24、思精巧,形式靈敏,可以比較全面地考察學生的根底知識和根本技能,從而增大了試卷的容量和知識覆蓋面。填空題是標準化考試的重要題型之一,它同選擇題一樣具有考察目的明確,知識復蓋面廣,評卷準確迅速,有利于考察學生的分析判斷才能和計算才能等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。1直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進展推理或運算,得出結論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。2驗證法:由題設找出適宜的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論