版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、第1章 集合與函數(shù)概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。 (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示: 如
2、我校的籃球隊員,太平洋,大西洋,印度洋,北冰洋1. 用拉丁字母表示集合:A=我校的籃球隊員,B=1,2,3,4,52集合的表示方法:列舉法與描述法。非負整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 aA列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。語言描述法:例:不是直角三角形的三角形數(shù)學式子描述
3、法:例:不等式x-3>2的解集是xR| x-3>2或x| x-3>24、集合的分類:(1)有限集 含有有限個元素的集合(2)無限集 含有無限個元素的集合(3)空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2“相等”關系(55,且55,則5=5)實例:設 A= B=-1,1 “元素相同”結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B
4、,即:A=B任何一個集合是它本身的子集。AA真子集:如果AB,且B A那就說集合A是集合B的真子集,記作A B(或B A)如果 AB, BC ,那么 AC如果AB 同時 BA 那么A=B3. 不含任何元素的集合叫做空集,記為規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運算1交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集記作AB(讀作”A交B”),即AB=x|xA,且xB2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作”A并B”),即AB=x|xA,或xB3、交集與并集的性質(zhì):AA
5、= A, A= , AB = BA,AA = A,A= A ,AB = BA.4、全集與補集(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。四、函數(shù)的有關概念1函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:AB為從集合A到集合B的一個函數(shù)記作: y=f(x),xA其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x
6、的值相對應的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域注意:如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;函數(shù)的定義域、值域要寫成集合或區(qū)間的形式定義域補充能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (
7、6)實際問題中的函數(shù)的定義域還要保證實際問題有意義. (又注意:求出不等式組的解集即為函數(shù)的定義域。)構成函數(shù)的三要素:定義域、對應關系和值域注意:(1)構成函數(shù)三個要素是定義域、對應關系和值域由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。相同函數(shù)的判斷方法:表達式相同;定義域一致 (兩點必須同時具備) (見課本21頁相關例2)值域補充(1)、函數(shù)的值域取決于定義域和對應法則,不論采取什么方法求函數(shù)的值域都應先考慮其定義域. (2).
8、應熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復雜函數(shù)值域的基礎。3. 函數(shù)圖象知識歸納 (1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (xA)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x A)的圖象集合C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 . 即記為C= P(x,y) | y= f(x) , xA ,圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。
9、 (2) 畫法A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內(nèi)描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來.B、圖象變換法(請參考必修4三角函數(shù))常用變換方法有三種,即平移變換、伸縮變換和對稱變換(3)作用:1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結合的方法分析解題的思路。提高解題的速度。發(fā)現(xiàn)解題中的錯誤。4了解區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示5什么叫做映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定
10、的元素y與之對應, 那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f:A B”給定一個集合A到B的映射,如果aA,bB.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應,集合A、B及對應法則f是確定的;對應法則有“方向性”,即強調(diào)從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;對于映射f:AB來說,則應滿足:()集合A中的每一個元素,在集合B中都有象,并且象是唯一的;()集合A中不同的元素,在集合B中對應的象可以是同一個;()不要求集合B中的每一個元素在集合A中都有原象。常用的函數(shù)表示法及各自
11、的優(yōu)點:1 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);2 解析法:必須注明函數(shù)的定義域;3 圖象法:描點法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;4 列表法:選取的自變量要有代表性,應能反映定義域的特征解析法:便于算出函數(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值.補充一:分段函數(shù) (參見課本P24-25)在定義域的不同部分上有不同的解析表達式的函數(shù)。在不同的范圍里求函數(shù)值時必須把自變量代入相應的表達式。分段函數(shù)的解析式不能寫成幾個不同的方程,而就寫函數(shù)值幾種不同的表達式并用一個左大括號括起來,并分別注明
12、各部分的自變量的取值情況(1)分段函數(shù)是一個函數(shù),不要把它誤認為是幾個函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集補充二:復合函數(shù)如果y=f(u),(uM),u=g(x),(xA),則 y=fg(x)=F(x),(xA) 稱為f、g 的復合函數(shù)。例如: y=2sinx y=2cos(2x+1)7函數(shù)單調(diào)性(1)增函數(shù)設函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量a,b,當a<b時,都有f(a)<f(b),那么就說f(x)在區(qū)間D上是增函數(shù)。區(qū)間D稱為y=f(x)的單調(diào)增區(qū)間(睇清楚課本單調(diào)區(qū)間的概念)如果對于區(qū)間D上的任意兩
13、個自變量的值a,b,當a<b 時,都有f(a)f(b),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.注意:1 函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);2 必須是對于區(qū)間D內(nèi)的任意兩個自變量a,b;當a<b時,總有f(a)<f(b) 。(2) 圖象的特點如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減 函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A) 定義法:任取a,bD,且a<b;2 作差f(a)
14、f(b);3 變形(通常是因式分解和配方);4 定號(即判斷差f(a)f(b)的正負);5 下結論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性) (B)圖象法(從圖象上看升降)_ (C)復合函數(shù)的單調(diào)性復合函數(shù)fg(x)的單調(diào)性與構成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關 注意:1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 2、還記得我們在選修里學習簡單易行的導數(shù)法判定單調(diào)性嗎?8函數(shù)的奇偶性(1)偶函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(x)=f(x),那么f(x)就叫做偶函數(shù)(2)奇函數(shù)一般地,對于函數(shù)f(x)的定義域
15、內(nèi)的任意一個x,都有f(x)=f(x),那么f(x)就叫做奇函數(shù)注意:1、 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。2、 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則x也一定是定義域內(nèi)的一個自變量(即定義域關于原點對稱)3、具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱總結:利用定義判斷函數(shù)奇偶性的格式步驟:1 首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;2 確定f(x)與f(x)的關系;3 作出相應結論:若f(x) = f(x) 或
16、 f(x)f(x) = 0,則f(x)是偶函數(shù);若f(x) =f(x) 或 f(x)f(x) = 0,則f(x)是奇函數(shù)注意:函數(shù)定義域關于原點對稱是函數(shù)具有奇偶性的必要條件首先看函數(shù)的定義域是否關于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .9、函數(shù)的解析表達式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.(2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構造時,可用待定系數(shù)法;已知復合函數(shù)fg(x)的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數(shù)表達式,則常用解方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版法人小額貸款借款合同范本3篇
- 2024年度工地施工機械設備節(jié)能改造合同2篇
- 2024年度專業(yè)數(shù)據(jù)錄入與審核合同2篇
- 2024版地下車位使用權投資與收益共享合同3篇
- 2024年度三方物流運輸及客戶滿意度提升合同3篇
- 2024年動漫IP商標跨界合作合同3篇
- 2024年度化工企業(yè)安全生產(chǎn)管理合同6篇
- 小學生班主任工作職責模版(3篇)
- 2024年學校計劃生育工作計劃例文(二篇)
- 六排鉆安全操作規(guī)程(3篇)
- 組織的高效溝通ppt課件
- 幼小銜接家長會PPT課件:如何做好幼小銜接
- 中考、高考標準答題卡答題注意事項ppt課件
- VTE預防健康教育ppt課件(PPT 42頁)
- 分戶驗收表格(全部)(18341)
- 最新laravel框架
- 3、信息系統(tǒng)及其建設軟件工程基礎7.24
- 中藥分類大全
- 精文減會經(jīng)驗交流材料
- 管道定額價目表
- 真崎航の21部
評論
0/150
提交評論