模糊聯(lián)想記憶FUZZYASSOCIATIVEMEMMORIESⅡ_第1頁
模糊聯(lián)想記憶FUZZYASSOCIATIVEMEMMORIESⅡ_第2頁
模糊聯(lián)想記憶FUZZYASSOCIATIVEMEMMORIESⅡ_第3頁
模糊聯(lián)想記憶FUZZYASSOCIATIVEMEMMORIESⅡ_第4頁
模糊聯(lián)想記憶FUZZYASSOCIATIVEMEMMORIESⅡ_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、模糊聯(lián)想記憶FUZZY ASSOCIATIVE MEMMORIESPresented by Yang BaishengE.E. Dept.Xidian UniversityOUTLINEwFuzzy Hebb FAMs(續(xù)) 6.Binary Input-Output FAMs 7. Multiantecedent FAM Rules 8. Adaptive Decompositional InferencewAdaptive FAMs (Product-Space Clustering in FAM Cells) 1.Adaptive FAM-Rule Generation 2.Adapti

2、ve BIOFAM Clustering 3.Adaptive BIOFAM Example: Inverted PendulumBinary Input-Output FAMsBIOFAMs map system-variable to control, classification, or other output data.For example: A BIOFAM maps traffic densities to screen (and red) light durations. In inverted-pendulum example, the system maps the sy

3、stem-variable ( ) to control data ( ).dvvd,fMultiantecedent FAM Rules (多前提FAM規(guī)則)1.Consider the FAM rule: “IF X is A, THEN C is Z,” or for short. 2.The rule is “IF X is A AND Y is B, THEN C is Z,” or for short.CTAACM);,(CBA),( CAWhat to do?Multiantecedent FAM Rules (多條件FAM規(guī)則)2 Single-antecedent FAMs:

4、Multiantecedent FAM Rules:),(BCACMBMABAFACMAACCBCACCBCMBBCCTBBCM),( CB),( CACTAACM);,(CBADefuzzify it to yield the exact output.Multiantecedent FAM Rules Suppose we present the exact inputs , to the single-FAM-rule system that stores(A,B;C).We present the unit bit vectors and to as nonfuzzy set inpu

5、ts.Thenix),(),(jYiXjiIIFyxFBCjYACiXMIMICbCajiCbaji),min(jyFiXIjYIFProperty of Hebb MatrixMultiantecedent FAM RuleswRepresenting with its membership function wFor all in :z)(),min(zmbaCjiZCmCBIOFAM prescriptionMultiantecedent FAM RulesAlso, We can get the FAM rules:),;,(DCBA),(CBICAIyxFTjYTiXjiCbCaji

6、Cbaji),min()(),min(zmbaCjiIF we encode : and with correlation-product encoding, decompositional inference gives the BIOFAM version of correlation-product inference:),(CA),( CBCorrelation-Product EncodingAdaptive Decompositional InferencewLet define an arbitrary neural-network system that maps fuzzy

7、subset of to fuzzy subsets of . can define a different neural-network. qnXIIN:)()(),(BNANBAFYXBACCCqpYIIN:AXCZThe neural-network change with time.Adaptive FAMs(Product-Space Clustering in FAM Cells)wAdaptive FAM-Rule GenerationwAdaptive BIOFAM ClusteringwAdaptive BIOFAM Example: Inverted PendulumAda

8、ptive FAM-Rule GenerationLet denote quantization vectors in the input-output product space .We count the number of quantizing vectors in each FAM cell . ijkkkijij1521kkkijFkmm,1kpnII Adaptive BIOFAM Clustering Through neural-network learning algorithm, learn to distribute input-output data in the in

9、put-output product space. Data clusters reflect FAM rules, such as the steady-state FAM rule ”IF is ZE AND is ZE, THEN is ZE.”f確定狀態(tài)變量(條件變量)和控制變量 (結(jié)論變量)收集相應(yīng) 的 訓(xùn)練樣本(大量的有代表性的)根據(jù)訓(xùn)練樣本的分布區(qū)間,劃分為相應(yīng)的模糊數(shù),并賦于模糊語言量。自適應(yīng)DCLAVQ對樣本聚類。統(tǒng)計落在每 個可能單元中的突觸矢量個數(shù),計算每個規(guī)則的權(quán)值據(jù)區(qū)間劃分進(jìn)行規(guī)則合并 產(chǎn)生規(guī)則庫,建立FAM系統(tǒng)BIOFAM聚類提取規(guī)則的過程Inverted Pend

10、ulum1、確定狀態(tài)變量和控制變量 狀態(tài)變量:擺線與垂直方向的 夾角 擺線的運動角速度 控制變量:馬達(dá)作用于擺線的力 2、訓(xùn)練樣本 在這里我是利用MATLAB工具包里的倒立擺模型生成了 1000個倒立擺軌跡樣本作為訓(xùn)練樣本。45,45s150,150fMembership Function-40-200204000.20.40.60.81-150 -100 -50050100 15000.20.40.60.81-10-5051000.20.40.60.81fFAM Bank & Synaptic Histogram02040600100200300400FAM Rules00),(),

11、(),();,(iBCACBCACaAMBMABAFMCBMCAMCBAmnnnmiiimmACcacacacacacacacacacacacaCAM21212221212111FAM Rulesw去模糊 按照質(zhì)心法解模糊得馬達(dá)作用力為-2.18。(20,-30)PS,NS ZEPS,ZE NS(0.83,0.31)(0.83,0.22) 0.31)(FmFZE)(FmFNS 0.22CbaCbCaBAFjiji),min(),(仿真演示系統(tǒng)小車軌跡scopeFAM RulesFAM RulesREFERENCEw基于FAM模糊控制器的研究中南大學(xué) 蔡自興,文敦偉 2003.08w單級倒立擺的模糊控制及仿真山東師范大學(xué) 趙 莉 2004.09w二級倒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論