版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、12 1、在初中我們是如何定義銳角三角函數(shù)的?、在初中我們是如何定義銳角三角函數(shù)的?sincostancacbba 復(fù)習(xí)回顧OabMPc1.2.1任意角的三角函數(shù)任意角的三角函數(shù)3OabMP yx2.在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?新課 導(dǎo)入422:barOPbMPaOM其中 yx2.在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?raOPOMcosrbOPMPsinabOMMPtan新課 導(dǎo)入baP,Mo5如果改變點(diǎn)在終邊上的位置,這三個(gè)比值會(huì)改變嗎?如果改變點(diǎn)在終邊上的位置,這三個(gè)比值會(huì)改變嗎?PMOP
2、MPsinOPOMcosOMMPtanOMPPMOPOPMPOOMMOPM誘思 探究MOyxP(a,b)6OPMPsinOPOMcosOMMPtan,則若1 rOPbaab3.銳角三角函數(shù)(在單位圓中)銳角三角函數(shù)(在單位圓中)以原點(diǎn)以原點(diǎn)O為為圓心,以單位圓心,以單位長(zhǎng)度為半徑的圓,稱(chēng)為單位圓長(zhǎng)度為半徑的圓,稱(chēng)為單位圓. yoP),(bax1M72.任意角的三角函數(shù)定義任意角的三角函數(shù)定義 設(shè) 是一個(gè)任意角,它的終邊與單位圓交于點(diǎn)),(yxP 那么:(1) 叫做 的正弦正弦,記作 ,即 ;ysinysin (2) 叫做 的余弦余弦,記作 ,即 ; cosxxcos(3) 叫做 的正切正切,記
3、作 ,即 。 xytanxytan 所以,正弦,余弦,正切都所以,正弦,余弦,正切都是以是以角為自變量角為自變量,以,以單位圓單位圓上點(diǎn)上點(diǎn)的的坐標(biāo)或坐標(biāo)的比值坐標(biāo)或坐標(biāo)的比值為函數(shù)值的為函數(shù)值的函數(shù),我們將他們稱(chēng)為函數(shù),我們將他們稱(chēng)為三角函數(shù)三角函數(shù).0 , 1AOyxyxP ,)0(x使比值有意義的角的集合使比值有意義的角的集合即為三角函數(shù)的定義域即為三角函數(shù)的定義域.8)0 , 1 (AxyoP),(yx的終邊說(shuō)說(shuō) 明明(1)正弦就是交點(diǎn)的縱坐標(biāo),余弦就是交點(diǎn))正弦就是交點(diǎn)的縱坐標(biāo),余弦就是交點(diǎn)橫坐標(biāo)的比值橫坐標(biāo)的比值. .的橫坐標(biāo),的橫坐標(biāo), 正切就是正切就是 交點(diǎn)的縱坐標(biāo)與交點(diǎn)的縱坐
4、標(biāo)與. .(2) 正弦、余弦總有意義正弦、余弦總有意義.當(dāng)當(dāng) 的終邊在的終邊在 y橫坐標(biāo)等于橫坐標(biāo)等于0, xytan無(wú)意義,此時(shí)無(wú)意義,此時(shí) )(2zkk軸上時(shí),點(diǎn)軸上時(shí),點(diǎn)P 的的(3)由于角的集合與實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,)由于角的集合與實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù).9任意角的三角函數(shù)的定義過(guò)程:任意角的三角函數(shù)的定義過(guò)程:直角三角形中定義銳角三角函數(shù) abrarbtan,cos,sin直角坐標(biāo)系中定義銳角三角函數(shù) abrarbtan,cos,sin單位圓中定義銳角三角函數(shù) ababtan,cos,sin
5、單位圓中定義任意角的三角函數(shù) ,sinyxcosxytan,10例例1 求求 的正弦、余弦和正切值的正弦、余弦和正切值.3535AOB解:在直角坐標(biāo)系中,作解:在直角坐標(biāo)系中,作 AOB,易知,易知 的終邊與單位圓的交點(diǎn)坐標(biāo)為的終邊與單位圓的交點(diǎn)坐標(biāo)為 )23,21(所以所以 2335sin2135cos335tan思考:若把角思考:若把角 改為改為 呢呢? 3567,2167sin, ,2367cos3367tan實(shí)例 剖析xyoAB3511例例2 已知角已知角 的終邊經(jīng)過(guò)點(diǎn)的終邊經(jīng)過(guò)點(diǎn) ,求角,求角 的正弦、余的正弦、余弦和正切值弦和正切值 .)4, 3(0P5) 4() 3(220OP解
6、解:由已知可得由已知可得設(shè)角設(shè)角 的終邊與單位圓交于的終邊與單位圓交于 ,),(yxP分別過(guò)點(diǎn)分別過(guò)點(diǎn) 、 作作 軸的垂線軸的垂線 、0PMPP00PMx400PM 于是,于是, ;54|1sin000OPPMOPMPyyyMP30OMxOMOMP00POM;531cos00OPOMOPOMxx34cossintanxy4, 30P0MOyxMyxP ,12 設(shè)角設(shè)角 是一個(gè)任意角,是一個(gè)任意角, 是終邊上的任意一點(diǎn),是終邊上的任意一點(diǎn),點(diǎn)點(diǎn) 與原點(diǎn)的距離與原點(diǎn)的距離),( yxP022yxrP那么那么 叫做叫做 的正弦,即的正弦,即ryrysin 叫做叫做 的余弦,即的余弦,即rxrxcos
7、 叫做叫做 的正弦,即的正弦,即xy0tanxxy 任意角任意角 的三角函數(shù)值僅與的三角函數(shù)值僅與 有關(guān),而與點(diǎn)有關(guān),而與點(diǎn) 在角的在角的終邊上的位置無(wú)關(guān)終邊上的位置無(wú)關(guān).P定義推廣:定義推廣xr1312cosrx125tanxy135sinry于是于是,鞏固 提高練習(xí)練習(xí) 1、已知角、已知角 的終邊過(guò)點(diǎn)的終邊過(guò)點(diǎn) , 求求 的三個(gè)三角函數(shù)值的三個(gè)三角函數(shù)值.5 ,12P解:由已知可得:解:由已知可得:142P15 ,8aa、已知角 的終邊上一點(diǎn)aR且a0 ,sin,cos ,tan求角 的的值.-15 ,8 ,xa ya解:由于22158170raaa a所以 10
8、17 ,ara若則于是88151588sin,cos,tan171717171515aaaaaa 20-17 ,ara若則于是88151588sin,cos,tan171717171515aaaaaa 1532sin ,cos ,tan.yx、已知角 的終邊在直線上,求角 的的值 1解: 當(dāng)角 的終邊在第一象限時(shí),221,2125在角 的終邊上取點(diǎn),則r=22 5152sin,cos,tan255155 2當(dāng)角 的終邊在第三象限時(shí),221, 2125r 在角 的終邊上取點(diǎn),則22 5152sin,cos,tan255155 161.根據(jù)三角函數(shù)的定義,確定它們的定義域根據(jù)三角函數(shù)的定義,確定它
9、們的定義域(弧度制)(弧度制)探探究究三角函數(shù)三角函數(shù)定義域定義域sincostanR)(2Zkk2.確定三角函數(shù)值在各象限的符號(hào)確定三角函數(shù)值在各象限的符號(hào)yxosinyxocosyxotan+( )( )( )( )( )( )( )( )( )( )( )R+-+-+-+-17 例例3 求證:當(dāng)且僅當(dāng)下列不等式組成立時(shí),求證:當(dāng)且僅當(dāng)下列不等式組成立時(shí), 角角 為第三象限角為第三象限角.0tan 0sin 證明:證明: 因?yàn)橐驗(yàn)槭绞?成立成立,所以所以 角的終邊可能位于第三角的終邊可能位于第三 或第四象限,也可能位于或第四象限,也可能位于y 軸的非正半軸上;軸的非正半軸上;0sin 又因
10、為又因?yàn)槭绞?成立,所以角成立,所以角 的終邊可能位于的終邊可能位于第一或第三象限第一或第三象限. 0tan 因?yàn)橐驗(yàn)槭蕉汲闪?,所以角式都成立,所以?的終邊只能位于第三象限的終邊只能位于第三象限.于是角于是角 為第三象限角為第三象限角.反過(guò)來(lái)請(qǐng)同學(xué)們自己證明反過(guò)來(lái)請(qǐng)同學(xué)們自己證明.18如果兩個(gè)角的終邊相同,那么這兩個(gè)角的如果兩個(gè)角的終邊相同,那么這兩個(gè)角的同一三角函數(shù)值有何關(guān)系?同一三角函數(shù)值有何關(guān)系? 終邊相同的角的同一三角函數(shù)值相等(公式一)終邊相同的角的同一三角函數(shù)值相等(公式一)tan)2tan(cos)2cos(sin)2sin(kkk其中其中zk 利用公式一,可以把求任意角的三角
11、函數(shù)值,轉(zhuǎn)化為利用公式一,可以把求任意角的三角函數(shù)值,轉(zhuǎn)化為求求 角的三角函數(shù)值角的三角函數(shù)值 .360020到或到 ?19例例4 確定下列三角函數(shù)值的符號(hào):確定下列三角函數(shù)值的符號(hào): (1) (2) (3)解:解:250cos)672tan(4sin(1)因?yàn)椋┮驗(yàn)?是第三象限角,所以是第三象限角,所以 ;2500250cos(2)因?yàn)椋┮驗(yàn)?= , 而而 是第一象限角,所以是第一象限角,所以 ;)672tan(48tan)360248tan(0)672tan(48練習(xí)練習(xí) 確定下列三角函數(shù)值的符號(hào)確定下列三角函數(shù)值的符號(hào)516cos)34sin()817tan( (3)因?yàn)椋┮驗(yàn)?是第四象限角,所以是第四象限角,所以 .404sin20例例5 求下列三角函數(shù)值:求下列三角函數(shù)值: (1) (2)49cos)611tan( 解:(解:(1) 224cos)24cos(49cos練習(xí)練習(xí) 求下列三角函數(shù)值求下列三角函數(shù)值319tan)431tan( 31336tan6tan)26tan()611tan((2)21117119cossintan363練習(xí):求值117119cossintan363解:cos4sin12tan 6363cossintan3631131322 221. 內(nèi)容總結(jié):內(nèi)容總結(jié): 三角函數(shù)的概念三角函數(shù)的概念.三角函數(shù)的定義域及三角函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 濱州職業(yè)學(xué)院《工程制圖實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院《智能工廠》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度XX文化遺址保護(hù)租賃合同范本3篇
- 2025年度城市軌道交通信號(hào)系統(tǒng)安裝合同范本
- 2025版口腔醫(yī)學(xué)專(zhuān)家長(zhǎng)期聘用服務(wù)合同附帶進(jìn)修培訓(xùn)條款3篇
- 廣告投放代理三方合同模板
- 2025年度鉆孔施工與地質(zhì)取樣服務(wù)合同3篇
- 解除終止勞動(dòng)勞動(dòng)合同證明書(shū)
- 2021全國(guó)教書(shū)育人楷模學(xué)習(xí)心得感悟
- 導(dǎo)演合同范本
- 2022-2023學(xué)年山東省東營(yíng)市東營(yíng)區(qū)七年級(jí)(上)期末歷史試卷(五四學(xué)制)(附答案詳解)
- 《城市道路工程設(shè)計(jì)規(guī)范》宣貫課件
- 稻盛和夫的實(shí)學(xué)經(jīng)營(yíng)與會(huì)計(jì)
- 視頻監(jiān)控維保項(xiàng)目投標(biāo)方案(技術(shù)標(biāo))
- 椎管內(nèi)腫瘤圍手術(shù)期護(hù)理課件
- 麻醉科主任述職報(bào)告
- PDCA降低護(hù)士針刺傷發(fā)生率
- 申請(qǐng)失業(yè)保險(xiǎn)金承諾書(shū)
- 工程竣工資料整理工程資料服務(wù)合同
- 智能化手術(shù)室介紹strykerisuite課件
- 廣東省佛山市南海區(qū)大瀝鎮(zhèn)2023-2024學(xué)年九年級(jí)上學(xué)期期中物理試卷
評(píng)論
0/150
提交評(píng)論