


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、.例談運動中求函數解析式的技巧 運動中求函數解析式是教師教學中的一大難點,也是大多數學生難點,這類題集幾何,代數知識于一體,綜合性強,難度大,學生解答時普遍感到很棘手. 我認為解決此類問題的關鍵為:一是動中求“靜”,抓住運動中的不變量;二是正確找出運動中的分界點,對不同階段的動態(tài)演變的所有情況進行分類討論,以確保解題的完備性,準確性.下面以部分省市的中考題為例,淺析此類問題的解題技巧.例1、(浙江省中考題)如圖1,邊長為1的正方形OABC的頂點O為坐標原點,點A在x軸的正半軸上,點C在y軸的正半軸上.動點D在線段BC上移動(不與B、C重合),連接OD,過點D作DEOD,交邊AB于點E,連接OE
2、.記CD的長為 t.(1) 當t=時,求直線DE的函數表達式;(2) 如果記梯形COEB的面積為S,求S關于t的函數關系式.分析:動點D在運動過程中,始終有CODBDE,所以是不變量.簡解:(1)t= BD= 點D的坐標為(,1) CODBDE E點的坐標為(1,) DE的解析式為:(2)CODBDE 例2、(揚州市中考題)如圖2-1是用鋼絲制作的一個幾何探究工具,其中ABC內接于G,AB是G的直徑, AB=6, AC=3,現(xiàn)將制作的幾何探究工具放在平面直角坐標系中,然后點A在射線Ox上由點O開始向右滑動,點B在射線Oy上也隨之向點O滑動(如圖2-2),當點B滑動至與點O重合時運動結束.(1)
3、 試說明在運動過程中,原點O始終在G上;(2) 設點C的坐標為(x,y),試求y與x之間的函數關系式,并寫出自變量x的取值范圍.分析:(1)略(2) 如圖2-2,作CDO A于點D,連結O C,在運動過程中,始終有不變量COD=ABC=30°簡解:COD=30°COD= 例3、(吉林省中考題)如圖3-1,在梯形ABCD中,AB=BC=10,CD=6,C=D=90°.(1)如圖3-2-1,動點P、Q同時以每秒1的速度從B出發(fā),點P沿BA、AD、DC運動到點C停止,點Q沿BC運動到點C停止.設P、Q同時從點B出發(fā)t秒時,PBQ的面積為y1(2),求y1(2)關于t(秒
4、)的函數關系式;(2)如圖3-3-1動點P以每秒1的速度從B出發(fā)沿BA運動,點E在線段CD上隨之運動,且PC=PE.設點P從點B出發(fā)t秒時,四邊形PADE的面積為y2(2),求y2(2)關于t(秒)的函數關系式,并寫出自變量t的取值范圍.(1) 分析: PBQ的面積y1隨著P、Q點的位置而變化,在變化過程中y1有三種情況,這三種情況主要由t的三個分界點t=10,28,34確定.故y1的解析式有三種情況.簡解:過點A作AMBC于M,過點P作PNBC于N,如圖3-2-2,則AM=6,AB=10 BM=8 AD=10+8=18 因為始終有PNBAMB 所以是不變量. 即 當時,如圖3-2-2,當時, 如圖3-2-3,, 當時, 如圖3-2-4,, (2)分析:在運動過程中始終有不變量 簡解:如圖3-3-2,過點作,垂足分別為則,由可知 則 = 例4:(河南省中考題)如圖4-1,邊長為2的正方形ABCD中,頂點A的坐標為(0,2),頂點D的坐標為(0,4),一次函數y=x+t的圖象直線隨t的不同取值變化時,位于的右下方由和正方形的邊圍成圖形的面積為S(陰影部分).(1) 求S隨t變化的函數關系式;(2) 請在平面直角坐標系下畫出S與t的函數圖象.分析:設與y軸的交點為F,在變化過程中始終有不變量 OF=t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司月度獎懲活動方案
- 公司消防比賽活動方案
- 公司盆栽種植活動方案
- 公司相親對象活動方案
- 公司現(xiàn)場招聘會策劃方案
- 公司組織溫泉玩活動方案
- 公司活動方案獎勵方案
- 公司行政生日會策劃方案
- 公司教育活動策劃方案
- 2025年廣東省廣州市南沙區(qū)中考二模道德與法治試題
- 2025屆重慶市普通高中學業(yè)水平選擇性考試預測歷史試題(含答案)
- 2025-2030中國眼底照相機行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2024年深圳市大鵬新區(qū)區(qū)屬公辦中小學招聘教師真題
- 人教版小學語文四年級下冊作文范文2
- 大學語文試題及答案琴
- 紅十字會資產管理制度
- 2025屆四川成都錦江區(qū)數學七下期末質量檢測試題含解析
- 無人機飛行器結構與性能試題及答案
- 廣東深圳2025年公開招聘農村(村務)工作者筆試題帶答案分析
- 《蔚來汽車》課件
評論
0/150
提交評論