




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、9.1 9.1 離散被解釋變量數(shù)據(jù)計(jì)量經(jīng)濟(jì)學(xué)離散被解釋變量數(shù)據(jù)計(jì)量經(jīng)濟(jì)學(xué)模型(一)模型(一)二元選擇模型二元選擇模型 Models with Discrete Dependent VariablesBinary Choice Model一、二元離散選擇模型的經(jīng)濟(jì)背景一、二元離散選擇模型的經(jīng)濟(jì)背景 二、二元離散選擇模型二、二元離散選擇模型 三、二元三、二元ProbitProbit離散選擇模型及其參數(shù)估計(jì)離散選擇模型及其參數(shù)估計(jì) 四、二元四、二元LogitLogit離散選擇模型及其參數(shù)估計(jì)離散選擇模型及其參數(shù)估計(jì) 五、二元離散選擇模型的變量顯著性檢驗(yàn)五、二元離散選擇模型的變量顯著性檢驗(yàn) 說明說明
2、在經(jīng)典計(jì)量經(jīng)濟(jì)學(xué)模型中,被解釋變量通常被假在經(jīng)典計(jì)量經(jīng)濟(jì)學(xué)模型中,被解釋變量通常被假定為連續(xù)變量。定為連續(xù)變量。 離散被解釋變量數(shù)據(jù)計(jì)量經(jīng)濟(jì)學(xué)模型(離散被解釋變量數(shù)據(jù)計(jì)量經(jīng)濟(jì)學(xué)模型(Models Models with Discrete Dependent Variableswith Discrete Dependent Variables)和離散)和離散選擇模型選擇模型(DCM, Discrete Choice Model)(DCM, Discrete Choice Model)。 二元選擇模型二元選擇模型(Binary Choice Model)(Binary Choice Model)和
3、多元選和多元選擇模型擇模型(Multiple Choice Model)(Multiple Choice Model)。 本節(jié)只介紹二元選擇模型。本節(jié)只介紹二元選擇模型。 離散選擇模型起源于離散選擇模型起源于FechnerFechner于于18601860年進(jìn)行的動物年進(jìn)行的動物條件二元反射研究。條件二元反射研究。 19621962年,年,WarnerWarner首次將它應(yīng)用于經(jīng)濟(jì)研究領(lǐng)域,首次將它應(yīng)用于經(jīng)濟(jì)研究領(lǐng)域,用以研究公共交通工具和私人交通工具的選擇問用以研究公共交通工具和私人交通工具的選擇問題。題。 7070、8080年代,離散選擇模型被普遍應(yīng)用于經(jīng)濟(jì)布年代,離散選擇模型被普遍應(yīng)用于
4、經(jīng)濟(jì)布局、企業(yè)定點(diǎn)、交通問題、就業(yè)問題、購買決策局、企業(yè)定點(diǎn)、交通問題、就業(yè)問題、購買決策等經(jīng)濟(jì)決策領(lǐng)域的研究。等經(jīng)濟(jì)決策領(lǐng)域的研究。 模型的估計(jì)方法主要發(fā)展于模型的估計(jì)方法主要發(fā)展于8080年代初期。年代初期。一、二元離散選擇模型的經(jīng)濟(jì)背景一、二元離散選擇模型的經(jīng)濟(jì)背景實(shí)際經(jīng)濟(jì)生活中的二元選擇問題實(shí)際經(jīng)濟(jì)生活中的二元選擇問題 研究選擇結(jié)果與影響因素之間的關(guān)系。研究選擇結(jié)果與影響因素之間的關(guān)系。 影響因素包括兩部分:影響因素包括兩部分:決策者的屬性決策者的屬性和和備選方案備選方案的屬性的屬性。 對于單個(gè)方案的取舍。例如,購買者對某種商品對于單個(gè)方案的取舍。例如,購買者對某種商品的購買決策問題的
5、購買決策問題 ,求職者對某種職業(yè)的選擇問題,求職者對某種職業(yè)的選擇問題,投票人對某候選人的投票決策,銀行對某客戶的投票人對某候選人的投票決策,銀行對某客戶的貸款決策。由貸款決策。由決策者的屬性決定。決策者的屬性決定。 對于兩個(gè)方案的選擇。例如,兩種出行方式的選對于兩個(gè)方案的選擇。例如,兩種出行方式的選擇,兩種商品的選擇。由擇,兩種商品的選擇。由決策者的屬性決策者的屬性和和備選方備選方案的屬性共同決定。案的屬性共同決定。二、二元離散選擇模型二、二元離散選擇模型1 1、原始模型、原始模型 對于二元選擇問題,可以建立如下計(jì)量經(jīng)濟(jì)學(xué)模對于二元選擇問題,可以建立如下計(jì)量經(jīng)濟(jì)學(xué)模型。其中型。其中Y為觀測值
6、為為觀測值為1和和0的決策被解釋變量;的決策被解釋變量;X為解釋變量,包括選擇對象所具有的屬性和選擇為解釋變量,包括選擇對象所具有的屬性和選擇主體所具有的屬性。主體所具有的屬性。 YXyiXii0)(iEiX)(iyEiiiipyPyPyE) 0(0) 1(1)(E yP yii()()1Xi) 0(1) 1(iiiiyPpyPp左右端矛盾左右端矛盾 由于存在這兩方面的問題,所以原始模型不能作由于存在這兩方面的問題,所以原始模型不能作為實(shí)際研究二元選擇問題的模型。為實(shí)際研究二元選擇問題的模型。 需要將原始模型變換為效用模型。需要將原始模型變換為效用模型。 這是離散選擇模型的關(guān)鍵。這是離散選擇模
7、型的關(guān)鍵。 iiiyy1101XXXXiiii當(dāng),其概率為當(dāng),其概率為具有異具有異方差性方差性 2 2、效用模型、效用模型 作為研究對象的二元選擇模型作為研究對象的二元選擇模型Uiii11X1Uiii000X UUiiiii1010X10()()yii*Xi第第i個(gè)個(gè)體個(gè)個(gè)體 選擇選擇1的效用的效用第第i個(gè)個(gè)體個(gè)個(gè)體 選擇選擇0的效用的效用P yP yPiii()()()*10Xi 注意,在模型中,效用是不可觀測的,人們能夠注意,在模型中,效用是不可觀測的,人們能夠得到的觀測值仍然是選擇結(jié)果,即得到的觀測值仍然是選擇結(jié)果,即1和和0。 很顯然,如果不可觀測的很顯然,如果不可觀測的U1U0,即對
8、應(yīng)于觀測,即對應(yīng)于觀測值為值為1,因?yàn)樵搨€(gè)體選擇公共交通工具的效用大,因?yàn)樵搨€(gè)體選擇公共交通工具的效用大于選擇私人交通工具的效用,他當(dāng)然要選擇公共于選擇私人交通工具的效用,他當(dāng)然要選擇公共交通工具;交通工具; 相反,如果不可觀測的相反,如果不可觀測的U1U0,即對應(yīng)于觀測值,即對應(yīng)于觀測值為為0,因?yàn)樵搨€(gè)體選擇公共交通工具的效用小于,因?yàn)樵搨€(gè)體選擇公共交通工具的效用小于選擇私人交通工具的效用,他當(dāng)然要選擇私人交選擇私人交通工具的效用,他當(dāng)然要選擇私人交通工具。通工具。3 3、最大似然估計(jì)最大似然估計(jì) 欲使得效用模型可以估計(jì),就必須為隨機(jī)誤差項(xiàng)欲使得效用模型可以估計(jì),就必須為隨機(jī)誤差項(xiàng)選擇一種特
9、定的概率分布。選擇一種特定的概率分布。 兩種最常用的分布是標(biāo)準(zhǔn)正態(tài)分布和邏輯兩種最常用的分布是標(biāo)準(zhǔn)正態(tài)分布和邏輯(logistic)分布,于是形成了兩種最常用的二元)分布,于是形成了兩種最常用的二元選擇模型選擇模型Probit模型模型和和Logit模型模型。 最大似然函數(shù)及其估計(jì)過程如下:最大似然函數(shù)及其估計(jì)過程如下:FtF t()( ) 1P yP yPPFFiiii()()()()()()* 1011XXXXiiiiP yyyFFnyyii(,)()()12011XXiiLFFin()()XXiyi1yii11標(biāo)準(zhǔn)正態(tài)分布或邏標(biāo)準(zhǔn)正態(tài)分布或邏輯分布的對稱性輯分布的對稱性似然函數(shù)ln(ln(
10、)() ln()LyFyFiiinXXii111ln()()Ly fFyfFiiiiiiin111X0i 在樣本數(shù)據(jù)的支持下,如果知道概率分布函數(shù)在樣本數(shù)據(jù)的支持下,如果知道概率分布函數(shù)和概率密度函數(shù),求解該方程組,可以得到模和概率密度函數(shù),求解該方程組,可以得到模型參數(shù)估計(jì)量。型參數(shù)估計(jì)量。 1階極值條件三、二元三、二元ProbitProbit離散選擇模型及其參數(shù)離散選擇模型及其參數(shù)估計(jì)估計(jì)1 1、標(biāo)準(zhǔn)正態(tài)分布的概率分布函數(shù)、標(biāo)準(zhǔn)正態(tài)分布的概率分布函數(shù) F txdxt( )()exp()22122f xx( )()exp()221222 2、重復(fù)觀測值不可以得到情況下二元、重復(fù)觀測值不可以得
11、到情況下二元ProbitProbit離散選擇模型的參數(shù)估計(jì)離散選擇模型的參數(shù)估計(jì) ln()()LfFfFq f qF qiiyiiiyiiiiiiniinii10111XXXXXX0iiiqyii21 關(guān)于參數(shù)的非線性函數(shù),不能直接求解,需采用關(guān)于參數(shù)的非線性函數(shù),不能直接求解,需采用完全信息最大似然法中所采用的迭代方法。完全信息最大似然法中所采用的迭代方法。 應(yīng)用計(jì)量經(jīng)濟(jì)學(xué)軟件。應(yīng)用計(jì)量經(jīng)濟(jì)學(xué)軟件。 這里所謂這里所謂“重復(fù)觀測值不可以得到重復(fù)觀測值不可以得到”,是指對每,是指對每個(gè)決策者只有一個(gè)觀測值。如果有多個(gè)觀測值,個(gè)決策者只有一個(gè)觀測值。如果有多個(gè)觀測值,也將其看成為多個(gè)不同的決策者。
12、也將其看成為多個(gè)不同的決策者。 例例 貸款決策模型貸款決策模型 分析與建模:分析與建模:某商業(yè)銀行從歷史貸款客戶中隨機(jī)某商業(yè)銀行從歷史貸款客戶中隨機(jī)抽取抽取78個(gè)樣本,根據(jù)設(shè)計(jì)的指標(biāo)體系分別計(jì)算它個(gè)樣本,根據(jù)設(shè)計(jì)的指標(biāo)體系分別計(jì)算它們的們的“商業(yè)信用支持度商業(yè)信用支持度”(CC)和)和“市場競爭地市場競爭地位等級位等級”(CM),對它們貸款的結(jié)果(),對它們貸款的結(jié)果(JG)采)采用二元離散變量,用二元離散變量,1表示貸款成功,表示貸款成功,0表示貸款失表示貸款失敗。目的是研究敗。目的是研究JG與與CC、CM之間的關(guān)系,并為之間的關(guān)系,并為正確貸款決策提供支持。正確貸款決策提供支持。 樣樣本本
13、觀觀測測值值CC=XYCM=SC該方程表示該方程表示,當(dāng),當(dāng)CC和和CM已知時(shí),代入方程,可以計(jì)算貸款成已知時(shí),代入方程,可以計(jì)算貸款成功的概率功的概率JGF。例如,將表中第。例如,將表中第19個(gè)樣本觀測值個(gè)樣本觀測值CC=15、CM=1代入方程右邊,計(jì)算括號內(nèi)的值為代入方程右邊,計(jì)算括號內(nèi)的值為0.1326552;查標(biāo)準(zhǔn)正態(tài);查標(biāo)準(zhǔn)正態(tài)分布表,對應(yīng)于分布表,對應(yīng)于0.1326552的累積正態(tài)分布為的累積正態(tài)分布為0.5517;于是,;于是,JG的預(yù)測值的預(yù)測值JGF=10.5517=0.4483,即對應(yīng)于該客戶,貸款,即對應(yīng)于該客戶,貸款成功的概率為成功的概率為0.4483。輸出的估計(jì)結(jié)果模
14、擬預(yù)測 預(yù)測:預(yù)測:如果有一個(gè)新客戶,根據(jù)客戶資料,計(jì)算如果有一個(gè)新客戶,根據(jù)客戶資料,計(jì)算的的“商業(yè)信用支持度商業(yè)信用支持度”(XY)和)和“市場競爭地位市場競爭地位等級等級”(SC),代入模型,就可以得到貸款成功),代入模型,就可以得到貸款成功的概率,以此決定是否給予貸款。的概率,以此決定是否給予貸款。3 3、重復(fù)觀測值可以得到情況下二元、重復(fù)觀測值可以得到情況下二元ProbitProbit離離散選擇模型的參數(shù)估計(jì)散選擇模型的參數(shù)估計(jì) 對每個(gè)決策者有多個(gè)重復(fù)(例如對每個(gè)決策者有多個(gè)重復(fù)(例如10次左右)觀測次左右)觀測值。值。 對第對第i個(gè)決策者重復(fù)觀測個(gè)決策者重復(fù)觀測ni次,選擇次,選擇
15、yi=1的次數(shù)比的次數(shù)比例為例為pi,那么可以將,那么可以將pi作為真實(shí)概率作為真實(shí)概率Pi的一個(gè)估計(jì)的一個(gè)估計(jì)量。量。 建立建立 “概率單位模型概率單位模型” ,采用廣義最小二乘法估,采用廣義最小二乘法估計(jì)計(jì) 。 實(shí)際中并不常用。實(shí)際中并不常用。 詳見教科書。詳見教科書。四、二元四、二元LogitLogit離散選擇模型及其參數(shù)離散選擇模型及其參數(shù)估計(jì)估計(jì)1 1、邏輯分布的概率分布函數(shù)、邏輯分布的概率分布函數(shù) F tet( ) 11f teett( )()12F teettt( )( )1f teetttt( )()( )( )112.00.05.10.15.20.25.30510152025
16、303540F0.00.20.40.60.81.0510152025303540DFB Brsch-Supanrsch-Supan于于19871987年指出年指出: : 如果選擇是按照效用最大化而進(jìn)行的,具有極限如果選擇是按照效用最大化而進(jìn)行的,具有極限值的邏輯分布是較好的選擇,這種情況下的二元值的邏輯分布是較好的選擇,這種情況下的二元選擇模型應(yīng)該采用選擇模型應(yīng)該采用Logit模型。模型。 2 2、重復(fù)觀測值不可以得到情況下二元、重復(fù)觀測值不可以得到情況下二元logitlogit離散選擇模型的參數(shù)估計(jì)離散選擇模型的參數(shù)估計(jì) 關(guān)于參數(shù)的非線性函數(shù),不能直接求解,需采用關(guān)于參數(shù)的非線性函數(shù),不能直
17、接求解,需采用完全信息最大似然法中所采用的迭代方法。完全信息最大似然法中所采用的迭代方法。 應(yīng)用計(jì)量經(jīng)濟(jì)學(xué)軟件。應(yīng)用計(jì)量經(jīng)濟(jì)學(xué)軟件。 ln()()()Ly fFyfFyiiiiiiiniin1111XXX0iiiProbit0.9999991.0000000.4472330.0000003 3、重復(fù)觀測值可以得到情況下二元、重復(fù)觀測值可以得到情況下二元logitlogit離離散選擇模型的參數(shù)估計(jì)散選擇模型的參數(shù)估計(jì) 對每個(gè)決策者有多個(gè)重復(fù)(例如對每個(gè)決策者有多個(gè)重復(fù)(例如10次左右)觀測次左右)觀測值。值。 對第對第i個(gè)決策者重復(fù)觀測個(gè)決策者重復(fù)觀測ni次,選擇次,選擇yi=1的次數(shù)比的次數(shù)比
18、例為例為pi,那么可以將,那么可以將pi作為真實(shí)概率作為真實(shí)概率Pi的一個(gè)估計(jì)的一個(gè)估計(jì)量。量。 建立建立“對數(shù)成敗比例模型對數(shù)成敗比例模型” ,采用廣義最小二乘,采用廣義最小二乘法估計(jì)法估計(jì) 。 實(shí)際中并不常用。實(shí)際中并不常用。 詳見教科書。詳見教科書。五、二元離散選擇模型的變量顯著性五、二元離散選擇模型的變量顯著性檢驗(yàn)檢驗(yàn)1 1、檢驗(yàn)假設(shè)、檢驗(yàn)假設(shè) 經(jīng)典模型中采用的變量顯著性經(jīng)典模型中采用的變量顯著性t檢驗(yàn)仍然是有效的。檢驗(yàn)仍然是有效的。 如果省略的變量與保留的變量不是正交的,那么如果省略的變量與保留的變量不是正交的,那么對參數(shù)估計(jì)量將產(chǎn)生影響,需要進(jìn)一步檢驗(yàn)這種對參數(shù)估計(jì)量將產(chǎn)生影響,需要進(jìn)一步檢驗(yàn)這種省略是否恰當(dāng)。省略是否恰當(dāng)。 零假設(shè)為:*11*0:XYH 備擇假設(shè)為:*2211*1:XXYH 2 2、統(tǒng)計(jì)量、統(tǒng)計(jì)量用 于 檢 驗(yàn) 的 統(tǒng) 計(jì) 量 為 Wald 統(tǒng) 計(jì) 量 、 LR 統(tǒng) 計(jì) 量 和 LM 統(tǒng) 計(jì) 量 , 具 體 計(jì) 算 方 法 如 下 : 2122 VW 其 中)(22 A syV arV。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)民專業(yè)合作社對農(nóng)戶秸稈利用的影響研究
- 朱狄審美發(fā)生論研究
- 未來主義風(fēng)格下的服裝品牌設(shè)計(jì)應(yīng)用研究
- 基于Transformer的腸道息肉影像分割方法研究
- 過渡金屬(鈷-鐵)基異質(zhì)復(fù)合材料的制備及其電解水催化性能研究
- 青苗轉(zhuǎn)讓合同范本
- BaTiO3基無鉛壓電陶瓷的制備、相結(jié)構(gòu)及壓電催化性質(zhì)研究
- 土地看護(hù)合同范本
- 雙包絡(luò)結(jié)構(gòu)設(shè)計(jì)的芳樟醇-PAMAM-玉米醇溶蛋白微納米非織造材料的制備及其芳香抗菌性能研究
- 棉稈板企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略研究報(bào)告
- 2025年上半年天津市寧河區(qū)事業(yè)單位招聘12人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解-1
- 2024年科技節(jié)小學(xué)科普知識競賽題及答案(共100題)
- 心肺復(fù)蘇課件
- 2024-2030年“一帶一路”背景下中國鐵塊礦產(chǎn)業(yè)未來發(fā)展趨勢及投資策略分析報(bào)告
- 鋼包熱修工安全技術(shù)操作規(guī)程(3篇)
- 風(fēng)力發(fā)電廠土建工程施工組織設(shè)計(jì)
- 2024年云南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 成人缺氧缺血性腦病護(hù)理
- 期末提優(yōu)測試卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)青島版
- 風(fēng)機(jī)基礎(chǔ)監(jiān)理實(shí)施細(xì)則
- GB/T 24503-2024礦用圓環(huán)鏈驅(qū)動鏈輪
評論
0/150
提交評論