版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、One- and two-dimensional Anderson model with long- range correlated-disorder一維和二維關(guān)聯(lián)無序安德森模型 One- and two-dimensional Anderson model with long- range correlated-disorderAnderson model-IntroductionEntanglement in 1D2D Entanglement2D conductance2D transmission2D magnetoconductanceAnderson model-Introduc
2、tionWhat is a disordered system? No long-range translational orderTypes of disorder (a)crystal(a)crystal(b) Component (b) Component disorderdisorder(c) position (c) position disorderdisorder(d) topological(d) topologicaldisorderdisorder diagonal disorder off-diagonal disorder complete disorder Local
3、ization prediction:an electron, when placed in a strong disordered lattice, will be immobile 1 P.W.Anderson, Phys.Rev.109 ,1492(1958). jitiiHNijijNiNii11Anderson model-IntroductionBy P.W.Anderson in 19581Anderson model-IntroductionIn 1983 and 1984 John extended the localization concept successfully
4、to the classical waves, such as elastic wave and optical wave 1. Following the previous experimental work ,Tal Schwartz et al. realized the Anderson localization with disordered two-dimensional photonic lattices2.1John S,Sompolinsky H and Stephen M J 1983 Phys.Rev.B27 5592; John S and Stephen M J 19
5、83 28 6358; John S 1984 Phys.Rev.Lett. 53 21692Schwartz Tal, Bartal Guy, Fishman Shmuel and Segev Mordechai 2007 Nature 446 52Anderson model-open problemsAbrahans et al.s scaling theory for localization in 19791( 3000 citations ,one of the most important papers in condensed matter physics) Predictio
6、ns(1)no metal-insulator transition in 2d disordered systems Supported by experiments in early 1980s. (2) (dephasing time )Results of J.J.Lin in 19872 0T 1 E.Abrahans,P.W.Anderson, D.C.Licciardello and T.V. Ramakrisbnan, Phys.Rev.Lett. 42 ,673(1979)2 J.J. Lin and N. Giorano, Phys. Rev. B 35, 1071 (19
7、87); J.J. Lin and J.P. Bird, J. Phys.: Condes. Matter 14, R501 (2002). 0Tc Results of J.J.Lin in 19872dephasing timeWork of Hui Xu et al.on systems with correlated disorder :劉小良,徐慧,等,物理學(xué)報,55(5),2493(2006);劉小良,徐慧,等,物理學(xué)報,55(6),2949(2006);徐慧,等,物理學(xué)報, 56(2),1208(2007);徐慧,等,物理學(xué)報, 56(3),1643(2007);馬松山,徐慧,等
8、,物理學(xué)報,56(5),5394(2007);馬松山,徐慧,等,物理學(xué)報, 56(9),5394(2007)。Anderson model-new points of view1。Correlated disorderCorrelation and disorder are two of the most important concepts in solid state physicsPower-law correlated disorder Gaussian correlated disorder 2。Entanglement1:an index for metal-insulator,l
9、ocalization-delocalization transition”entanglement is a kind of unlocal correlation”(MPLB19,517,2005).Entanglement of spin wave functions:four states in one site:0 spin; 1up; 1down; 1 up and 1 downEntanglement of spatial wave functions (spinless particle) :two states:occupied or unoccupiedMeasures o
10、f entanglement:von Newmann entropy and concurrence1Haibin Li and Xiaoguang Wang, Mod. Phys. Lett. B19,517(2005);Junpeng Cao, Gang Xiong, Yupeng Wang, X. R. Wang, Int. J.Quant. Inform.4 , 705(2006). Hefeng Wang and Sabre Kais, Int. J.Quant. Inform.4 , 827(2006). Anderson model- new points of view3.ne
11、w applications(1)quantum chaos(2)electron transport in DNA chainsThe importance of the problem of the electron transport in DNA1 (3)pentacene2(并五苯)Molecular electronicsOrganic field-effect-transistorspentacene:layered structure, 2D Anderson system1R. G. Endres, D. L. Cox and R. R. P. Singh,Rev.Mod.P
12、hys.76 ,195(2004); Stephan Roche, Phys.Rev.Lett. 91 ,108101(2003). 2 M.Unge and S.Stafstrom, Synthetic Metals,139(2003)239-244;J.Cornil,J.Ph.Calbert and J.L.Bredas, J.Am.Chem.Soc.,123,1520-1521(2001). DNA structureEntanglement in one-dimensional Anderson model with long-range correlated disorder one
13、-dimensional nearest-neighbor tight-binding model Concurrence: 1)(121NiiMCijijiiijtEvon Neumann entropy 0ncn011nNnnNnncn00)1 (11nnnnnnnzz)1 (log)1 (log22nnnnvnzzzzENnvnvENE1134567890.020.040.060.080.100.120.140.160.18 (10-4)W 1.5 1.7 2.0 2.05 2.1 3.0 3.5 4.0 5.0power-law correlated91011121314150.010
14、.020.030.040.050.060.070.08 (10-4)W power-law correlatedLeft. The average concurrence of the Anderson model with power-law correlation as the function of disorder degree W and for various .A band structure is demonstrated.Right. The average concurrence of the Anderson model with power-law correlatio
15、n for =3.0 and at the bigger W range. A jumping from the upper band to the lower band is shown 2D entanglementMethod:taking the 2D lattice as 1D chain1 Longyan Gong and Peiqing Tong,Phys.Rev.E 74 (2006) 056103.;Phys.Rev.A 71 ,042333(2005). Quantum small world network in 1 square lattice051015200.00.
16、51.01.52.02.53.03.5 (10-4)W 1.75 2.0 2.5 3.5 4.0 4.5 5.5L=30051015200.20.30.40.50.60.7 von Neumann entropyW 1.75 2.0 2.5 3.5 4.0 4.5 5.5L=30Left. The average concurrence of the Anderson model with power-law correlation as the function of disorder degree W and for various . A band structure is demons
17、trated.Right. The average von Newmann entropy of the Anderson model with power-law correlation as the function of disorder degree W and for various . A band structure is demonstrated.Lonczos methodEntanglement in DNA chain guanine (G), adenine (A), cytosine(C), thymine (T) Qusiperiodical modelR-S mo
18、del to generate the qusiperiodical sequence with four elements ( G , C , A , T ) . T h e i n f l a t i o n ( s u b s t i t u t i o n s ) r u l e i s GGC;CGA;ATC;TTA. Starting with G (the first generation), the first several generations are G,GC,GCGA,GCGAGCTC, GCGAGCTC GCGATAGA .Let Fi the element (s
19、ite) number of the R-S sequence in the ith generation, we have Fi+1=2Fi for i=1 . So the site number of the first several generations are 1,2,4,8,16, , and for the12th generation , the site number is 2048. 01230.00.20.40.60.81416 (10-4)W uncorrelated uniformdistribution =1.5 =2.0 =3.0 =5.0power-law
20、correlatedThe average concurrence of the Anderson model for the DNA chain as the function of site number. The results are compared with the uncorrelated uniform distribution case. Spin Entanglement of non-interacting multiple particles:Greens function methodFinite temperature two body Greens functio
21、nFinite temperature two body Greens functionOne particle density matrix and One body Greens functionOne particle density matrix and One body Greens functionTwo particle density matrixTwo particle density matrixwhere,HF approx. Ifandwhere&whereGeneralized Werner StatethenInbasisSeparability crite
22、rion=PPT= 31palways satisfied sinceConductance and magnetoconductance of the Anderson model with long-range correlated disorder (1)Static conductance of the two-dimensional quantum dots with long-range correlated disorder Idea:the distribution function of the conductance in the localized regime1d:cl
23、ear Gaussian2d: unclearMethod to calculating the conductance :Greens function and Kubo formulaln gN10HHH.).(,1, 1,0cccctcctccHjijiijyjijijiijxjijijiijxwteVH)cos(1jijijiccx, ,xHvx)(Im)(Im)()(22EgvEgvTrheGxx)()(21)(ImEgEgiEgARIgHI)()()(21EEEE),4(21)(2EiEE-4-20240246810 ConductanceFermi energy Referenc
24、e 02468100246 ConductanceWGaussian corellation distribution Ef=2.5 Ef=-2.5 Ef=0 Ef=1.5 Ef=-1.502468100123456 ConductanceWUniform distribution Ef=0 Ef=1.5 Ef=2.5Fig.1Fig.2aFig.2bFig.1 Conductance as the function of Fermi energy for the systems with power-law correlated disorder (W=1.5 ) for various exponent .The results are compared to the reference of that of a uniform random on-site energy distribution. solid: uniform distribution reference; dash:; dash dot: ;dash dot dot: ;short dash: Fig .2 Conductance changes with disorder degree for differ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國木工車刀市場調(diào)查研究報告
- 2024年中國同軸線專用壁雷器市場調(diào)查研究報告
- 2024年中國包卷機市場調(diào)查研究報告
- 2024至2030年摩托車離合器摩擦力矩測量儀項目投資價值分析報告
- 2024年中國亮度色度計市場調(diào)查研究報告
- 2024至2030年抗震減振器項目投資價值分析報告
- 2024年中國DVR音視頻解碼芯片市場調(diào)查研究報告
- 二零二五年度建筑節(jié)能材料供應(yīng)合作合同2篇
- 二零二五年度城市綜合體場地租賃合同范本2篇
- 2024至2030年巧克力項目投資價值分析報告
- 藝術(shù)漆培訓(xùn)課件
- 建德海螺二期施工組織設(shè)計
- 山東省菏澤市2023-2024學(xué)年高一上學(xué)期期末測試物理試題(解析版)
- 2024年學(xué)校后勤日用品采購合同范本2篇
- 中建中建機電工程聯(lián)動調(diào)試實施方案范本
- 新《安全生產(chǎn)法》安全培訓(xùn)
- 山東省濟南市2023-2024學(xué)年高一上學(xué)期1月期末考試 物理 含答案
- 上海教育出版社 藝術(shù) 八年級上冊第三單元 鄉(xiāng)音鄉(xiāng)韻 京腔京韻系鄉(xiāng)情 教學(xué)設(shè)計
- 人教版(2024新教材)七年級上冊數(shù)學(xué)第一章《有理數(shù)》單元測試卷(含答案)
- 《普通動物學(xué)》課件P脊索動物門(5)鳥綱
- 《色彩基礎(chǔ)知識》PPT課件(詳解)
評論
0/150
提交評論