版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2019-2020年初中數(shù)學(xué)競(jìng)賽專題復(fù)習(xí)第二篇平面幾何第11章比例與相似試題1新人教版li.i.i*在中,角平分線與交于,,求、之長(zhǎng)度(用、表示).解析如圖,易知有,故,11.1.2已知:等腰梯形中,、分別是腰、的中點(diǎn),且交于,解析如圖,不妨設(shè),貝y,故,MN=-(AD+BC)=1=CE.2求證:.C11.1.3在中,的平分線交于,過(guò)分別作、的平行線交、于、,和的延長(zhǎng)線交于,求證:.GEBEBEBDAB1解析如圖,由,及平分,知=-GFDFAECDAC2故,因此.11.1.4設(shè)為的邊的中點(diǎn),過(guò)作一直線,交、或其延長(zhǎng)線于、,又過(guò)作,交的延長(zhǎng)線于,貝.解析由平行知于是由第一式與最后一式,轉(zhuǎn)化為乘法
2、,即可得結(jié)論11.1.5已知是平行四邊形內(nèi)的任意一點(diǎn),過(guò)點(diǎn)作,分別交、于、,又過(guò)作,分別交、于、;連結(jié),交于;連結(jié),交于如果,求證:平行四邊形是菱形解析如圖,易知,.由于,故OP-AB=GA-BF=AE-DH=OQ-AD,于是,四邊形是菱形.11.1.6中,是的角平分線.是的中點(diǎn),過(guò)作直線平行于交、或延長(zhǎng)線于和.求證:.解析如圖,易知比靠近,在上,而在延長(zhǎng)線上易知,而,故,同理,也是此值評(píng)注不用比例線段的方法是:延長(zhǎng)一倍至,則,再證和均為等腰三角形11.1.7凸四邊形中,平行于交延長(zhǎng)線于點(diǎn),平行于交延長(zhǎng)線于點(diǎn),連結(jié)、,證明:.解析如圖,設(shè)、交于,則由平行線性質(zhì),知,同理,故,故.F11.1.8
3、如圖,在中.,、為的三等分角線,交的平分線于、,連結(jié)并延長(zhǎng)交于,求證:.解析易知關(guān)于對(duì)稱又設(shè),貝y,故,于是由角平分線之性質(zhì),知蘭=空=AC=也=AP,于是.BRRQCQBQPQ11.1.9梯形中,(),和交于,過(guò)作,交、于、,和交于,過(guò)作,交、于、.求證:.解析空=如=DM=1-BM=1-EM,故,同理,故,同理,兩式相加并整理即得結(jié)BCACDBDBAD論.11.1.10設(shè)、分別是的三邊的長(zhǎng),且,求它的內(nèi)角、.解析由條件,得,即,所以.如圖,延長(zhǎng)至,使,于是.因此在與,,且為公共角,所以S,而,故ZABC=/D+上BAD=2ZD=2ZBAC.11.1.11*設(shè)凸四邊形,對(duì)角線交于,過(guò)作直線與
4、平行,交、及延長(zhǎng)線于、.若,求.解析延長(zhǎng)與延長(zhǎng)線交于,則有設(shè),則,代人上式,便得.故.11.1.12為等腰三角形底邊上的高,為的平分線,作于,又作與直線交于,求證:.解析如圖,設(shè),則由角平分線性質(zhì)知,故.又取中點(diǎn),連結(jié),故,故,從而,故.于是.11.1.13*足球場(chǎng)四周有四盞很高的燈,在長(zhǎng)方形的四角,且一樣高,求某一運(yùn)動(dòng)員任何時(shí)刻的四個(gè)影子長(zhǎng)之間的關(guān)系.跳起來(lái)呢?解析設(shè)運(yùn)動(dòng)員在矩形球場(chǎng)內(nèi),如圖(a),過(guò)作,在上,在上,則AP2-BP2=AM2BM2=DN2-CN2=PD2PC2,或.DNC又設(shè)燈高為,運(yùn)動(dòng)員身高為,點(diǎn)處的燈造成的影子長(zhǎng)為',如圖),貝y,得,同理,故四個(gè)影子的關(guān)系是HA
5、'PA圖(b)H跳起來(lái)時(shí),不妨設(shè)腳底離地,此時(shí)點(diǎn)處的燈造成的影子長(zhǎng)度為',如圖(C),則于是同理,所以'+=仍舊成立.11.1.14*求日高公式.解析如圖所示,設(shè)太陽(yáng)高度為,桿'=直立在地上,影子的長(zhǎng)度分別為,',兩桿距離為.所謂日高公式就是用、表示,這里假定大地為平面,且、'與在同一平面上.易知,代入得,故;同理,'.由代入得,由此解得.11.1.15*設(shè)梯形ABCD,E、F分別在AB、CD上,且,若,梯形和梯形的周長(zhǎng)相等,求.解析如圖,作平行四邊形,在上,貝,.設(shè)與交于.易知梯形的周長(zhǎng)為的周長(zhǎng)加上6,梯形的周長(zhǎng)為梯形的周長(zhǎng)加6,故的周
6、長(zhǎng)=梯形的周長(zhǎng),也即周長(zhǎng)的一半即又,故.GF=CH-DF=45x4=30,CD661111.1.16*如圖,已知中,、交于,、交于,過(guò)作,交于,交于,求證:.C解析設(shè)與交于,與直線交于,則.(PK、pGcdGM于是MN=KN-KM=KM-1=KM=PGPG=GM.(GK丿GKBDPG11.1.17四邊形為正方形,、在延長(zhǎng)線上,、分別是、與的交點(diǎn).求證:為等腰三角形.解析如圖,不妨設(shè)正方形邊長(zhǎng)為1,則,.作,交于則c=DG_AD_丄DEAD+EFv2于是,即為直角三角形斜邊之中點(diǎn),于是.11.1.18*在中,是內(nèi)一點(diǎn),、分別在、上,且,.若,求.解析如圖,延長(zhǎng)交于'(同理定義,圖中未畫出
7、),設(shè),貝y,同理,,由于,故,11.1.19內(nèi)有一點(diǎn),的延長(zhǎng)線交邊于點(diǎn)',的延長(zhǎng)線交邊于點(diǎn)',的延長(zhǎng)線交邊于點(diǎn)'.若,求的值(用表示)解析如圖,設(shè),則,而,即,展開(kāi)得+yz+zx+xyz3+2(x+y+z)+xy+yz+zx=1+(x+y+z)+xy故.11.1.20已知的三邊長(zhǎng)分別為、三角形中有一點(diǎn),過(guò)作三邊的平行線,長(zhǎng)度均為,試用、來(lái)表示.解析設(shè)延長(zhǎng)后與交于'(同理定義'與'),貝y,同理,一仔士口亦知(111)°(PAPBPC')c(abc丿|AA'BB'CC'丿所以.評(píng)注存在的條件是,代人得:、
8、可組成三角形三邊之長(zhǎng).11.1.21已知、分別是銳角三角形的三邊、上的點(diǎn),且、相交于點(diǎn),設(shè),求的大小.解析由熟知結(jié)論,得,因此x(x+6)(z+6)+y(x+6)(z+6)+z(x+6)(y+6)=,即卩=24.11.1.22如圖,正方形邊長(zhǎng)為1,為延長(zhǎng)線上一點(diǎn),與、分別交于點(diǎn)、,(點(diǎn)是與交點(diǎn))與交于點(diǎn),若,求的長(zhǎng).解析連結(jié),則由,得,于是,為中點(diǎn),所以11.1.23*如圖,已知,、分別在、上,則下面任兩條可推出第三條:(1)、共點(diǎn);(2);(3)解析(1),(2)(3):,則,故(2),(3)(1):,故可設(shè)、延長(zhǎng)后交于,、延長(zhǎng)后交于,與重合(1),(3)(2):若與不平行,作,在上,在上,
9、則有,得,即,矛盾11.1.24中,為的平分線,在、上取,、分別為、的中點(diǎn),貝y.解析如圖,連結(jié),設(shè)中點(diǎn)為,連結(jié)、,則,所以,且ZGMF=ZGME+ZEMF=上ABE+180。ZBEC=180。ZBAC.取上的點(diǎn),使,則等腰S等腰,且對(duì)應(yīng)邊,,故第三邊也平行,即.11.1.25*已知:中,為上一點(diǎn),且非中點(diǎn),為中點(diǎn),求證:,平分.解析如圖,作,與延長(zhǎng)線交于,延長(zhǎng)交于,則由,有.又,故.由條件,知,于是,四邊形乃等腰梯形(若四邊形是菱形,則,為中點(diǎn),與題設(shè)矛盾),又為中點(diǎn),顯然(比如由全等)有.C11.1.26*已知、分別為矩形的邊、的中點(diǎn),延長(zhǎng)線上有一點(diǎn),延長(zhǎng)后與交于.求證.平分解析如圖,設(shè)與
10、交于,則,過(guò)作,交于,則.又,故,于是,由于將垂直平分,于是.11.1.27*在中,求證:,、為的對(duì)應(yīng)邊長(zhǎng).解析如圖,延長(zhǎng)至,使,于是,故,.中,則.又由角平分線性質(zhì),得,代人前式,得即得結(jié)論.D評(píng)注中,ZA=2ZBoBC2=AC(AC+AB),證明如下:延長(zhǎng)至,使,于是ZD=ZABCoBC2=AC(AC+AD)或.11.1.28已知,、分別是、上任兩點(diǎn),、延長(zhǎng)后交于,、延長(zhǎng)后交于,求證:若,則、共點(diǎn);若,則.解析如圖,設(shè),延長(zhǎng)、分別與交于、,設(shè).由知,同理,即,于是,或.若,則,又做;,由,得、共點(diǎn)(見(jiàn)題11.1.23).11.1.29*正三角形,、是、的中點(diǎn),、分別在、上,、共線,、共線,
11、、共線,求.解析如圖,不妨設(shè)邊長(zhǎng)為2,則,由,得,同理,1,于是,1x=-1=-1=_-,1z12x12x所以,F(xiàn)P=亠=3-后45-1PE1一x<5一1211.1.30任給銳角,問(wèn)在、上是否各存在一點(diǎn)、,使,,?解析這樣的是存在的.作法如下:在上任取一點(diǎn)',作'于',分別過(guò)作、的垂直線交于點(diǎn)BD'DC若'恰在上,貝y,即為滿足條件的三點(diǎn)、;若,'不在上,設(shè)、,所在直線與交點(diǎn)為(因?yàn)槭卿J角三角形,所以交點(diǎn)必在上),過(guò)分別作、的垂線交、于、,則,連結(jié),易知,得由作法所以,、滿足條件.11.1.31*已知凸四邊形內(nèi)有一點(diǎn),、的平分線分別交、于、
12、,求證:四邊形為平行四邊形的充要條件是為、的中垂線的交點(diǎn).解析若為、的中垂線之交點(diǎn),貝,于是,于是,同理,又同理,故四邊形為平行四邊形反之,若四邊形為平行四邊形,由于,故由梅氏定理,若、不與平行,它們將與交于同一點(diǎn)這與矛盾,因此,同理,故在、的中垂線上ii.i.32*已知梯形中,分別在、上,求證:若,貝y.又此時(shí)若、交于,交于,問(wèn)三直線、共點(diǎn)的條件解析如圖(a),不妨議、延長(zhǎng)后交于,于是有,圖(a)于是PA-PC=PB-PD=PE-PF,由此可得,故.因?yàn)樗倪呅螢槠叫兴倪呅危^(guò)的中點(diǎn),若、共線,貝由塞瓦定理,有下面刻畫或的位置如圖(b),設(shè)與交于,則由,而,故,此即.11.1.33*如圖,已知
13、中,、交于,延長(zhǎng)后與的延長(zhǎng)線交于,求證:.FHFMFGHDHK解析作,與父于,與父于,則由平仃,知,故=,于是.EJENGNDJEJ11.1.34*已知,、是角平分線,、在上,且,求證:平分.解析1設(shè)內(nèi)心為,與父于,與父于,連結(jié),父于由角平分線及平仃性質(zhì),有,故有FMFSSIFPAFENETIEPEAE又,故S,于是,于是平分.解析2由角平分線性質(zhì),知,于是.又易見(jiàn),故,于是,以下同解析1.評(píng)注注意解析1更好些,因?yàn)橹灰笃椒?不要求是內(nèi)心,本題結(jié)論也成立.于是本題的逆命題是,由平分得出平分,而不能證明是內(nèi)心.這個(gè)逆命題也是正確的,讀詩(shī)者不妨一試.11.1.35*為內(nèi)一點(diǎn),、在上,、在上,線段
14、、交于.若,則平分,反之亦然.解析如圖,作平仃四邊形,、分別在、上.設(shè),.此時(shí)易得,因此喘(11ab(111=+b1(ODOAJOC1OCOB丿于是.但,故.所以平仃四邊形是菱形,為之平分線.Y反之,可設(shè)所作平仃四邊形為菱形.設(shè)菱形邊長(zhǎng)為,則,即得.同理,于是命題得證.11.1.36*已知,三邊分別為、,是角平分線.求之長(zhǎng)(用、,表示)解析如圖,延長(zhǎng)至,使,于是、共圓,又",故=AD2+AD-DE=AD+BD-CD.設(shè),則,故ADjbc_上正+心"2(b+c)2(b+c)2=bc(b+c+a)(b+c-a).b+c11.1.37*在中,、三等分,且2,3,6,求的長(zhǎng).解析如圖,設(shè),則由角平分線性質(zhì)知,.由于,即,同理,消去,得.11.1.38*已知平行四邊形,點(diǎn)是點(diǎn)在上的垂足,點(diǎn)在上”,點(diǎn)在上,點(diǎn)是與的交點(diǎn),又延長(zhǎng)后與的延長(zhǎng)線交于點(diǎn),求證:.解析如圖,作.對(duì)與來(lái)說(shuō),而,如果能證明兩三角形(順向)相似,那么第三組對(duì)應(yīng)邊與就垂直了,于是只需證明或.事實(shí)上設(shè)、延長(zhǎng)后交于點(diǎn),且設(shè),則易知,于是=cot0=cot0=cot0,又,故,于是,代人上式,即得.IKIJADFB§11.2相似三角形11.2.1已知,是中點(diǎn),、在的同側(cè),且,證明:.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度木結(jié)構(gòu)建筑設(shè)計(jì)與施工總承包合同8篇
- 國(guó)際貿(mào)易課件:WTO的反傾銷制度
- 2025年度數(shù)據(jù)中心承建與信息安全防護(hù)合同4篇
- 二零二五年度LED顯示屏產(chǎn)品安全認(rèn)證合同3篇
- 2025版環(huán)保設(shè)施運(yùn)營(yíng)維護(hù)管理承包合同范本4篇
- 2025年度木材市場(chǎng)風(fēng)險(xiǎn)管理與價(jià)格波動(dòng)合同4篇
- 二零二五年度養(yǎng)老產(chǎn)業(yè)項(xiàng)目合伙人分紅及服務(wù)質(zhì)量保障合同
- 二零二五年度池塘水域漁業(yè)養(yǎng)殖技術(shù)培訓(xùn)與推廣協(xié)議
- 2025年度企業(yè)銷售團(tuán)隊(duì)績(jī)效目標(biāo)協(xié)議書
- 二零二五年度順豐快遞員勞動(dòng)合同爭(zhēng)議解決機(jī)制
- 2024生態(tài)環(huán)境相關(guān)法律法規(guī)考試試題
- 有砟軌道施工工藝課件
- 兩辦意見(jiàn)八硬措施煤礦安全生產(chǎn)條例宣貫學(xué)習(xí)課件
- 40篇短文搞定高中英語(yǔ)3500單詞
- 人教版高中數(shù)學(xué)必修二《第九章 統(tǒng)計(jì)》同步練習(xí)及答案解析
- 兒科護(hù)理安全警示教育課件
- 三年級(jí)下冊(cè)口算天天100題
- 國(guó)家中英文名稱及代碼縮寫(三位)
- 人員密集場(chǎng)所消防安全培訓(xùn)
- 液晶高壓芯片去保護(hù)方法
- 拜太歲科儀文檔
評(píng)論
0/150
提交評(píng)論