版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第 PAGE11 頁 共 NUMPAGES11 頁高一數學知識點整理歸納2022精選高一數學知識點總結1(1)若f(_)是偶函數,那么f(_)=f(-_);(2)若f(_)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);(3)判斷函數奇偶性可用定義的等價形式:f(_)f(-_)=0或(f(_)0);(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;(5)奇函數在對稱的單調區(qū)間內有相同的單調性;偶函數在對稱的單調區(qū)間內有相反的單調性;(1)復合函數定義域求法:若已知的定義域為a,b,其復合函數fg(_)的定義域由不等式ag(_)b解出即可;若已知fg(_)的定義域為a,b,求
2、f(_)的定義域,相當于_a,b時,求g(_)的值域(即f(_)的定義域);研究函數的問題一定要注意定義域優(yōu)先的原則。(2)復合函數的單調性由“同增異減”判定;3.函數圖像(或方程曲線的對稱性)(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;(3)曲線C1:f(_,y)=0,關于y=_+a(y=-_+a)的對稱曲線C2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0);(4)曲線C1:f(_,y)=0關于點(a,b)的對稱曲線C2方程為
3、:f(2a-_,2b-y)=0;(5)若函數y=f(_)對_R時,f(a+_)=f(a-_)恒成立,則y=f(_)圖像關于直線_=a對稱,高中數學;(6)函數y=f(_-a)與y=f(b-_)的圖像關于直線_=對稱;高一數學知識點總結2集合具有某種特定性質的事物的總體。這里的事物可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急。2、數學名詞。一組具有某種共同性質的數學元素:有理數的。3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論??低?Cantor,G.F.P.,1845年19_年,德國數學家先驅,是
4、集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。集合,在數學上是一個基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。集合與集合之間的關系某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做??占侨魏渭系淖蛹?,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(
5、說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)高一數學知識點總結3冪函數定義:形如y=_a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。定義域和值域:當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則_肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則_不
6、能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當_為不同的數值時,冪函數的值域的不同情況如下:在_大于0時,函數的值域總是大于0的實數。在_小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域冪函數性質:對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:首先我們知道如果a=p/q,q和p都是整數,則_(p/q)=q次根號(_的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是0,+)。當指數n是負整數時,設a=-k,則_=1/(_k),顯然_0,函數的定義域是(-,0)(0
7、,+).因此可以看到_所受到的限制兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:排除了為0與負數兩種可能,即對于_0,則a可以是任意實數;排除了為0這種可能,即對于_排除了為負數這種可能,即對于_為大于且等于0的所有實數,a就不能是負數??偨Y起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則_肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則_不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等
8、于0的所有實數。在_大于0時,函數的值域總是大于0的實數。在_小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。由于_大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.可以看到:(1)所有的圖形都通過(1,1)這點。(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。(4)當a小于0時,a越小,圖形傾斜程度越大。(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。(6)顯然冪函數無界。高一數學知識點總結41、柱、錐、臺、球
9、的結構特征(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等表示:用各頂點字母,如五棱錐幾何特征:側面、對角面都是三角形
10、;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。(3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。分類:以底面多邊形的邊數作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等表示:用各頂點字母,如五棱臺幾何特征:上下底面是相似的平行多邊形側面是梯形側棱交于原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側面展開圖是一個矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。幾何特征:底面是一個圓;母線交于圓
11、錐的頂點;側面展開圖是一個扇形。(6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:上下底面是兩個圓;側面母線交于原圓錐的頂點;側面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑。2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;側視圖反映了物體上下、前后的位置關系,
12、即反映了物體的高度和寬度。3、空間幾何體的直觀圖斜二測畫法斜二測畫法特點:原來與_軸平行的線段仍然與_平行且長度不變;原來與y軸平行的線段仍然與y平行,長度為原來的一半。高一數學知識點總結5圓的方程定義:圓的標準方程(_-a)2+(y-b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。直線和圓的位置關系:1.直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式來討論位置關系.0,直線和圓相交.=0,直線和圓相切.0,直線和圓相離.方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.dR,直線和圓相離.2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.切線的性質圓心到切線的距
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人住房抵押貸款還款管理協(xié)議4篇
- 2025版攝影棚租賃合同涵蓋廣告、商業(yè)拍攝6篇
- 2025年度水利工程個人承包協(xié)議書2篇
- 2025版地質勘探打井合同范本3篇
- 二零二五年度車輛運輸服務與貨物跟蹤系統(tǒng)合作協(xié)議2篇
- 2025年度魚塘承包權抵押貸款服務合同4篇
- 二零二五年度橙子出口歐盟認證采購合同3篇
- 2025年度個人房屋維修欠款合同模板4篇
- 二零二五年度畜牧養(yǎng)殖生物安全防控體系建設合同4篇
- 2025年度個人房屋買賣合同履行監(jiān)督及保障協(xié)議2篇
- 春節(jié)文化研究手冊
- 犯罪現場保護培訓課件
- 扣款通知單 采購部
- 電除顫操作流程圖
- 湖北教育出版社三年級下冊信息技術教案
- 設計基礎全套教學課件
- IATF16949包裝方案評審表
- 人教版八年級美術下冊全冊完整課件
- 1 運行方案說明
- 北京房地產典當合同
- PHILIPS HeartStart XL+操作培訓課件
評論
0/150
提交評論