版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1偶函數(shù)關(guān)于點對稱,當(dāng)時,求( )ABCD2設(shè)函數(shù),則使得成立的的取值范圍是( )ABCD3一個由兩個圓柱組合而成的
2、密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則( )ABCD4執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為( )ABCD5黨的十九大報告明確提出:在共享經(jīng)濟等領(lǐng)域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進(jìn)而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進(jìn)行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是( )ABCD6設(shè),則關(guān)于的方程所表示的曲線是( )A
3、長軸在軸上的橢圓B長軸在軸上的橢圓C實軸在軸上的雙曲線D實軸在軸上的雙曲線7若,滿足約束條件,則的最大值是( )ABC13D8已知,則( )A2BCD39若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為( ). A6500元B7000元C7500元D8000元10已知直線過圓的圓心,則的最小值為( )A1B2C3D411直三棱柱中,則直線與所成的角的余弦值為( )ABCD12已知,則( )ABC3D4二、填空題:本題
4、共4小題,每小題5分,共20分。13電影厲害了,我的國于2018年3月正式登陸全國院線,網(wǎng)友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”厲害了,我的國正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看厲害了,我的國,并把標(biāo)識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進(jìn)行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預(yù)測,第
5、4個盒子里放的電影票為_14已知內(nèi)角,的對邊分別為,則_15已知數(shù)列為等比數(shù)列,則_.16已知實數(shù),滿足,則目標(biāo)函數(shù)的最小值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機抽取一個容量為7的樣本進(jìn)行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)(2)如果隨機抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:學(xué)生序號1234567數(shù)學(xué)成績60657075858790物理成績70778085908693若規(guī)定85分以上(包括85分)
6、為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜??附:線性回歸方程,其中,.768381252618(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為cos(+)1(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點M (2,0),若直線l與曲線C相交于P、Q兩點,求的值19(12分)在如圖所示的多面體中,平面
7、平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且, ,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值20(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.21(12分)已知函數(shù)f(x)|x2|x1|.()解不等式f(x)1;()當(dāng)x0時,若函數(shù)g(x)(a0)的最小值恒大于f(x),求實數(shù)a的取值范圍22(10分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】推導(dǎo)
8、出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點對稱,則,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.2B【解析】由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對值不等式求得結(jié)果.【詳解】由題意知:定義域為,為偶函數(shù),當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函
9、數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡不等式.3B【解析】根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎(chǔ)題.4C【解析】由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當(dāng)n=2時,時,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結(jié)果,屬于基礎(chǔ)題5D【解析】 根據(jù)四個列聯(lián)表中的等高條形圖可知, 圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大, 它最能體現(xiàn)共享經(jīng)濟對該部
10、門的發(fā)展有顯著效果,故選D6C【解析】根據(jù)條件,方程即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型【詳解】解:k1,1+k0,k2-10,方程,即,表示實軸在y軸上的雙曲線,故選C【點睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵7C【解析】由已知畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值【詳解】解:表示可行域內(nèi)的點到坐標(biāo)原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標(biāo)原點的距離最大,即故選:【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運算求解能力,屬于基礎(chǔ)題8A【解析】利用分段函數(shù)的性質(zhì)逐步求解即可得答案【詳解】,;故選:【點睛】本題考查了
11、函數(shù)值的求法,考查對數(shù)的運算和對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時注意函數(shù)性質(zhì)的合理應(yīng)用9D【解析】設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可【詳解】設(shè)目前該教師的退休金為x元,則由題意得:600015%x10%1解得x2故選D【點睛】本題考查由條形圖和折線圖等基礎(chǔ)知識解決實際問題,屬于基礎(chǔ)題10D【解析】圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值【詳解】圓的圓心為,由題意可得,即,則,當(dāng)且僅當(dāng)且即時取等號,故選:【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運算能力,屬
12、于基礎(chǔ)題11A【解析】設(shè),延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設(shè),延長至,使得,連,在直三棱柱中,四邊形為平行四邊形,(或補角)為直線與所成的角,在中,在中,在中,在中,在中,.故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.12A【解析】根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13A或D【解析】分別假設(shè)每一個人一半是對的,然后分別進(jìn)
13、行驗證即可【詳解】解:假設(shè)甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設(shè)甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒子里面放的是是對的,由此可知第4個盒子里面放的是故第4個盒子里面放的電影票為或故答案為:或【點睛】本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結(jié)能力,屬于中檔題14【解析】利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,故答案為:.【點
14、睛】本題考查了正弦定理求角,三角恒等變換,屬于基礎(chǔ)題.1581【解析】設(shè)數(shù)列的公比為,利用等比數(shù)列通項公式求出,代入等比數(shù)列通項公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知, 因為,由等比數(shù)列通項公式可得,解得,由等比數(shù)列通項公式可得,.故答案為:【點睛】本題考查等比數(shù)列通項公式;考查運算求解能力;屬于基礎(chǔ)題.16-1【解析】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值【詳解】作出實數(shù)x,y滿足對應(yīng)的平面區(qū)域如圖陰影所示;由zx+2y1,得yx,平移直線yx,由圖象可知當(dāng)直線yx經(jīng)過點A時,直線yx的縱截距最小,此時z最小由,得A(1,1),此時z的最小值為z121
15、1,故答案為1【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,是基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)不同的樣本的個數(shù)為.(2)分布列見解析,.線性回歸方程為.可預(yù)測該同學(xué)的物理成績?yōu)?6分.【解析】(1)按比例抽取即可,再用乘法原理計算不同的樣本數(shù). (2)名學(xué)生中物理和數(shù)學(xué)都優(yōu)秀的有3名學(xué)生,任取3名學(xué)生,都優(yōu)秀的學(xué)生人數(shù)服從超幾何分布,故可得其概率分布列及其數(shù)學(xué)期望.而線性回歸方程的計算可用給出的公式計算,并利用得到的回歸方程預(yù)測該同學(xué)的物理成績.【詳解】(1)依據(jù)分層抽樣的方法,24名女同學(xué)中應(yīng)抽取的人數(shù)為名,18名
16、男同學(xué)中應(yīng)抽取的人數(shù)為名,故不同的樣本的個數(shù)為.(2)7名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為3名,的取值為0,1,2,3.,.的分布列為0123 .,.線性回歸方程為.當(dāng)時,.可預(yù)測該同學(xué)的物理成績?yōu)?6分.【點睛】在計算離散型隨機變量的概率時,注意利用常見的概率分布列來簡化計算(如二項分布、超幾何分布等)18(1)l: ,C方程為 ;(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進(jìn)一步轉(zhuǎn)換為直線l的極坐標(biāo)方程為cos(+)1,則 轉(zhuǎn)換為直角坐標(biāo)
17、方程為(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應(yīng)的參數(shù)),所以,所以【點睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型19 (1)見解析(2) 【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面 ,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,所以平面.又平面,所以.因為,所以.因為,所以平面
18、.因為分別為,的中點,所以,所以平面(2)設(shè),由(1)得平面.由,得,.過點作,與的延長線交于點,取的中點,連接,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因為為平行四邊形,所以,所以平面.又因為,所以平面.因為,所以平面平面.由(1),得平面,所以平面,所以.因為,所以平面,所以是與平面所成角.因為,所以平面,平面,因為,所以平面平面.所以,解得.在梯形中,易證,分別以,的正方向為軸,軸,軸的正方向建立空間直角坐標(biāo)系.則,由,及,得,所以,.設(shè)平面的一個法向量為,由得令,得m=(3,1,2) 設(shè)平面的一個法向量為,由得令,得.所以又因為二面角是鈍角,所以二面角的余弦值是.20(1)(2);時,取得最小值【解析】(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關(guān)鍵是掌握等差數(shù)列通項公式和前項和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國男士精梳細(xì)針彈力內(nèi)褲數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國恭喜發(fā)財工藝品數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國光學(xué)輪廓儀數(shù)據(jù)監(jiān)測研究報告
- 2025至2031年中國蘋果酸鋅行業(yè)投資前景及策略咨詢研究報告
- 2025年度航空零部件代工與銷售合同4篇
- 臨時用電供應(yīng)合同樣本版
- 2025年度模具租賃與全球市場拓展合同2篇
- 2025年印刷玩具彩盒行業(yè)深度研究分析報告
- 2025年度房地產(chǎn)抵押典當(dāng)貸款業(yè)務(wù)合作協(xié)議4篇
- 二零二五版虛擬現(xiàn)實技術(shù)路演投資協(xié)議4篇
- 2025年上半年江蘇連云港灌云縣招聘“鄉(xiāng)村振興專干”16人易考易錯模擬試題(共500題)試卷后附參考答案
- DB3301T 0382-2022 公共資源交易開評標(biāo)數(shù)字見證服務(wù)規(guī)范
- 人教版2024-2025學(xué)年八年級上學(xué)期數(shù)學(xué)期末壓軸題練習(xí)
- 江蘇省無錫市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(原卷版)
- 俄語版:中國文化概論之中國的傳統(tǒng)節(jié)日
- 2022年湖南省公務(wù)員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- 婦科一病一品護(hù)理匯報
- 哪吒之魔童降世
- 2022年上海市各區(qū)中考一模語文試卷及答案
- 2024年全國統(tǒng)一高考數(shù)學(xué)試卷(新高考Ⅱ)含答案
- 我國無菌包裝行業(yè)消費量已超千億包-下游需求仍存擴容潛力
評論
0/150
提交評論