![2022年河北省唐山市五校高考數(shù)學(xué)押題試卷含解析_第1頁](http://file4.renrendoc.com/view/4ae2018da7abe6fda09b4706a36d267e/4ae2018da7abe6fda09b4706a36d267e1.gif)
![2022年河北省唐山市五校高考數(shù)學(xué)押題試卷含解析_第2頁](http://file4.renrendoc.com/view/4ae2018da7abe6fda09b4706a36d267e/4ae2018da7abe6fda09b4706a36d267e2.gif)
![2022年河北省唐山市五校高考數(shù)學(xué)押題試卷含解析_第3頁](http://file4.renrendoc.com/view/4ae2018da7abe6fda09b4706a36d267e/4ae2018da7abe6fda09b4706a36d267e3.gif)
![2022年河北省唐山市五校高考數(shù)學(xué)押題試卷含解析_第4頁](http://file4.renrendoc.com/view/4ae2018da7abe6fda09b4706a36d267e/4ae2018da7abe6fda09b4706a36d267e4.gif)
![2022年河北省唐山市五校高考數(shù)學(xué)押題試卷含解析_第5頁](http://file4.renrendoc.com/view/4ae2018da7abe6fda09b4706a36d267e/4ae2018da7abe6fda09b4706a36d267e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1點在所在的平面內(nèi),且,則( )ABCD2已知函數(shù)是奇函數(shù),則的值為( )A10B9C7D13已知函數(shù),若成立,則的最小值為( )A0B4CD4對于函數(shù),定義滿足的實數(shù)為的不動點,設(shè),
2、其中且,若有且僅有一個不動點,則的取值范圍是( )A或BC或D5設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時,若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為( )ABCD6若復(fù)數(shù)滿足,則( )ABCD7已知正項等比數(shù)列滿足,若存在兩項,使得,則的最小值為( ).A16BC5D48已知函數(shù)是上的偶函數(shù),且當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),則,的大小關(guān)系是( )ABCD9已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則( )ABCD10已知,若,則實數(shù)的值是()A-1B7C1D1或711設(shè)點,不共線,則“”是“”( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分又不必要條件12
3、在三棱錐中,且分別是棱,的中點,下面四個結(jié)論:;平面;三棱錐的體積的最大值為;與一定不垂直.其中所有正確命題的序號是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知各項均為正數(shù)的等比數(shù)列的前項積為,(且),則_.14若,則_.15已知多項式(x1)3(x2)2x5a1x4a2x3a3x2a4xa5,則a4_,a5_16根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(不含端點),且滿足勾股定理,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17
4、(12分)在中,角,所對的邊分別是,且.(1)求的值;(2)若,求的取值范圍.18(12分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列(1)若數(shù)列是常數(shù)列,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),求證:對任意的恒成立19(12分)為了解廣大學(xué)生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網(wǎng)絡(luò)知識問卷調(diào)查,每一位學(xué)生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調(diào)
5、查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學(xué)生家長制定如下獎勵方案:得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:每次獲贈的隨機話費和對應(yīng)的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預(yù)計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:;若;則,.20(12分)在中,內(nèi)角所對的邊分別為,已知,且.()求角的大??;()若,求面積的取值范圍.21(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上
6、隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大??;(2)若一個零件的尺寸是100 cm,試判斷該零件是否屬于“不合格”的零件.22(10分)已知兩數(shù)(1)當(dāng)時,求函數(shù)的極值點;(2)當(dāng)時,若恒成立,求的最大值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】確定點為外心,代入化簡得到,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,又,所以因
7、為,聯(lián)立方程可得,因為,所以,即故選:【點睛】本題考查了向量模長的計算,意在考查學(xué)生的計算能力.2B【解析】根據(jù)分段函數(shù)表達式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運算能力,分析問題、解決問題的能力.3A【解析】令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】(),令:,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.
8、4C【解析】根據(jù)不動點的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時,則在內(nèi)單調(diào)遞增;當(dāng)時,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.5D【解析】先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當(dāng)時,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為
9、存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當(dāng)時,所以函數(shù)在時單調(diào)遞減,由選項知,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.6C【解析】化簡得到,再計算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復(fù)數(shù)的化簡,共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計算能力.7D【解析】由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設(shè)等比數(shù)列公比為,由已知,即,解得或(舍),又,所以,即,故,所以,當(dāng)且僅當(dāng)時,等號成立.故選:D.【點睛】本題考查利用基本不
10、等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.8D【解析】利用對數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項.【詳解】因為,故.又,故.因為當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),所以.因為為偶函數(shù),故,所以.故選:D.【點睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關(guān)系,本題屬于中檔題.9B【解析】由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件 件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標(biāo),然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值【詳解】畫出,滿足的為常數(shù))可行域如下
11、圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點,使目標(biāo)函數(shù)取得最大值,將,代入得:故選:【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值10C【解析】根據(jù)平面向量數(shù)量積的坐標(biāo)運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運算,代入化簡可得.解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題.11C【解析】利用向量垂直的表示、向量數(shù)量積的運算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,不共線,則“”;故“”是“”的
12、充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.12D【解析】通過證明平面,證得;通過證明,證得平面;求得三棱錐體積的最大值,由此判斷的正確性;利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,又,所以平面,所以,故正確;因為,所以平面,故正確;當(dāng)平面與平面垂直時,最大,最大值為,故錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.二、填空
13、題:本題共4小題,每小題5分,共20分。13【解析】利用等比數(shù)列的性質(zhì)求得,進而求得,再利用對數(shù)運算求得的值.【詳解】由于,所以,則,.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎(chǔ)題.1413【解析】由導(dǎo)函數(shù)的應(yīng)用得:設(shè),所以,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),所以,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項式定理,屬于中檔題1516 4 【解析】只需令x0,易得a5,再由(x1)3(x2)2(x1)52(x1)4(x1)3,可得a42.【詳解】令x0,得a5(01)3(02)24
14、,而(x1)3(x2)2(x1)3(x1)22(x1)1(x1)52(x1)4(x1)3;則a4258316.故答案為:16,4.【點睛】本題主要考查了多項式展開中的特定項的求解,可以用賦值法也可以用二項展開的通項公式求解,屬于中檔題.16【解析】先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,所以.故答案為:【點睛】本題考查向量的數(shù)量積,重點考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1);(2)【解析】(1)利用正弦定理邊化角,結(jié)合兩角和差正弦公式可整理求得,進而求得和,代入求得結(jié)果;(2)利用
15、正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據(jù)正弦型函數(shù)值域的求解方法,結(jié)合的范圍可求得結(jié)果.【詳解】(1)由正弦定理可得: 即 (2)由(1)知: , ,即的取值范圍為【點睛】本題考查解三角形知識的相關(guān)應(yīng)用,涉及到正弦定理邊化角的應(yīng)用、兩角和差正弦公式和輔助角公式的應(yīng)用、與三角函數(shù)值域有關(guān)的取值范圍的求解問題;求解取值范圍的關(guān)鍵是能夠利用正弦定理將邊長的問題轉(zhuǎn)化為三角函數(shù)的問題,進而利用正弦型函數(shù)值域的求解方法求得結(jié)果.18(1);(2)詳見解析;(3)詳見解析.【解析】(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項與前項和的關(guān)系求解即可.(2)取,并結(jié)合通項與前項和的
16、關(guān)系可求得再根據(jù)化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2) 當(dāng)時,代入所給的條件化簡可得,進而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:是各項不為零的常數(shù)列,則,則由,及得,當(dāng)時,兩式作差,可得當(dāng)時,滿足上式,則;證明:,當(dāng)時,兩式相減得:即即又,即當(dāng)時,兩式相減得:數(shù)列從第二項起是公差為的等差數(shù)列又當(dāng)時,由得,當(dāng)時,由,得故數(shù)列是公差為的等差數(shù)列;證明:由,當(dāng)時,即,即,即,當(dāng)時,即故從第二項起數(shù)列是等比數(shù)列,當(dāng)時,另外,由已知條件可得,又,因而令,則故對任意的恒成立【點睛】本題主要考查了等差等比數(shù)列的綜合運用,需要熟練運用通項與前項和的關(guān)系分析
17、數(shù)列的遞推公式繼而求解通項公式或證明等差數(shù)列等.同時也考查了數(shù)列中的不等式證明等,需要根據(jù)題意分析數(shù)列為等比數(shù)列并求出通項,再利用作商法證明.屬于難題.19(1);(2)估計此次活動可能贈送出100000元話費【解析】(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長參加活動可獲贈話費為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計此次活動可能贈送出的話費數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計表,結(jié)合題中所給的條件,可以求得又,所以;(2)根據(jù)題意,某家長參加活動可獲贈話費的可能值有10,20,30,40元,且每位家長獲得贈送1次、2次話費的概率都為,得10元的情況為低于平均值,概率
18、,得20元的情況有兩種,得分低于平均值,一次性獲20元話費;得分不低于平均值,2次均獲贈10元話費,概率,得30元的情況為:得分不低于平均值,一次獲贈10元話費,另一次獲贈20元話費,其概率為,得40元的其情況得分不低于平均值,兩次機會均獲20元話費,概率為.所以變量的分布列為:某家長獲贈話費的期望為.所以估計此次活動可能贈送出100000元話費.【點睛】本題考查正態(tài)分布、離散型隨機變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計算要利用該分布的密度函數(shù)圖象的對稱性來進行,本題屬于中檔題.20();()【解析】()根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.()根據(jù)()由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】()因為,所以,或,或,因為,所以所以;()由余弦定理得: ,所以,所以,當(dāng)且僅當(dāng)取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.21(1)66.5 (2)屬于【解析】(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1) (2) 所以該零件屬于“不合格”的零件【點睛】本題主要考查頻率分布圖中平均數(shù)的計算和應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.22(1)唯一的極大值點1,無極小值點(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村房屋建房合同范例
- 保姆和家政合同范本
- 兒童樂園實施合同范本
- 前期工程門窗合同范本
- 公地共用合同范本
- 傳媒主播合同范本
- 農(nóng)業(yè)抵押合同范本
- 義診合作協(xié)議合同范本
- 2025年標(biāo)準(zhǔn)鍵盤行業(yè)深度研究分析報告
- 寫結(jié)婚合同范例
- 《行政倫理學(xué)教程(第四版)》課件 第7、8章?行政人格、行政組織倫理
- 2024年江蘇蘇??毓杉瘓F有限公司招聘筆試沖刺題(帶答案解析)
- 2023年4月自考00504藝術(shù)概論試題及答案含解析
- 美麗的大自然(教案)2023-2024學(xué)年美術(shù)一年級下冊
- 2024年低壓電工考試題庫(試題含答案)
- 成都特色民俗課件
- 地質(zhì)勘探行業(yè)分析
- 花城版音樂四下-第四課-認知音樂節(jié)奏(教案)
- 寵物醫(yī)院員工手冊
- 2024年高考英語讀后續(xù)寫高分寶典專題08讀后續(xù)寫肢體動作描寫積累1(詞-句-文)講義
- 商業(yè)與公積金貸款政策
評論
0/150
提交評論