版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知當(dāng),時(shí),則以下判斷正確的是 ABCD與的大小關(guān)系不確定2在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:假設(shè)螞蟻窩
2、在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn)那么完成這個(gè)工作所需要走的最短路徑長度是( )ABCD3已知是偶函數(shù),在上單調(diào)遞減,則的解集是ABCD4大衍數(shù)列,米源于我國古代文獻(xiàn)乾坤譜中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為( )ABCD5()ABCD6已知全集,函數(shù)的定義域?yàn)?,集合,則下列結(jié)論正確的是ABCD7已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐
3、的三視圖可能是下列各圖中的( )ABCD8已知復(fù)數(shù)z滿足,則z的虛部為( )ABiC1D19已知雙曲線的右焦點(diǎn)為,過原點(diǎn)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),延長交右支于點(diǎn),若,則雙曲線的離心率是( )ABCD10在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限11雙曲線x2a2-y2b2=1(a0,b0)的離心率為3,則其漸近線方程為Ay=2xBy=3xCy=22xDy=32x12年部分省市將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為
4、ABCD二、填空題:本題共4小題,每小題5分,共20分。13正四棱柱中,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為_.14如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為_. 15若一組樣本數(shù)據(jù)7,9,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為_.16已知向量=(1,2),=(-3,1),則=_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱錐PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M為PC的中點(diǎn)(1)求異面直線AP,BM所成角的余弦值;(2)點(diǎn)N在線段AD上,且AN,若直線MN與平面PB
5、C所成角的正弦值為,求的值18(12分)在中,角的對邊分別為,已知(1)求角的大??;(2)若,求的面積19(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點(diǎn),平面平面,.(1)求證:平面;(2)求證:平面.20(12分)某商場舉行有獎(jiǎng)促銷活動(dòng),顧客購買每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷鰝€(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)閭€(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).若,求顧
6、客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.21(12分)已知圓O經(jīng)過橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角22(10分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相
7、等,求這三個(gè)點(diǎn)的極坐標(biāo).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,時(shí),根據(jù)條件得,即可得結(jié)果【詳解】解:設(shè),則,即為增函數(shù),又,即,所以,所以故選:C【點(diǎn)睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題2C【解析】將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊易求得,由,知,由余弦定理知其中,故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力
8、,屬于中檔題.3D【解析】先由是偶函數(shù),得到關(guān)于直線對稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.4B【解析】直接代入檢驗(yàn),排除其中三個(gè)即可【詳解】由題意,排除D,排除A,C同時(shí)B也滿足,故選:B【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解5B【解析】利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案【詳解】故選B【點(diǎn)
9、睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題6A【解析】求函數(shù)定義域得集合M,N后,再判斷【詳解】由題意,故選A【點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點(diǎn)集,都由代表元決定7C【解析】試題分析:通過對以下四個(gè)四棱錐的三視圖對照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖8C【解析】利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【詳解】,復(fù)數(shù)的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.9D【解析】設(shè)雙曲線的左焦點(diǎn)為,連接,設(shè),則,
10、和中,利用勾股定理計(jì)算得到答案.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接,設(shè),則,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.10B【解析】化簡復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.11A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:e=ca=3,b2a2=c2-a2a2=e2-1=3-1=2,ba=
11、2,因?yàn)闈u近線方程為y=bax,所以漸近線方程為y=2x,選A.點(diǎn)睛:已知雙曲線方程x2a2-y2b2=1(a,b0)求漸近線方程:x2a2-y2b2=0y=bax.12B【解析】甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B二、填空題:本題共4小題,每小題5分,共20分。132.【解析】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,
12、又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問題,考查了直線與平面所成角的計(jì)算.對于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14【解析】由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般
13、為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.151【解析】根據(jù)題意,由平均數(shù)公式可得,解得的值,進(jìn)而由方差公式計(jì)算,可得答案【詳解】根據(jù)題意,數(shù)據(jù)7,9,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1【點(diǎn)睛】本題考平均數(shù)、方差的計(jì)算,考查運(yùn)算求解能力,求解時(shí)注意求出的值,屬于基礎(chǔ)題16-6【解析】由可求,然后根據(jù)向量數(shù)量積的坐標(biāo)表示可求 .【詳解】=(1,2),=(-3,1),=(-4,-1),則 =1(-4)+2(-1)=
14、-6故答案為-6【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)試題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1).(2)1【解析】(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN,設(shè)N(0,0)(04),則(1,1,2),再求得平面PBC的一個(gè)法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos,|求解.【詳解】(1) 因?yàn)镻A平面ABCD,且AB,AD平面ABCD,所以PAAB,PAAD.又因?yàn)锽AD90,所以PA,AB,AD兩兩互相垂直分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD2
15、AB2BC4,PA4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4)又因?yàn)镸為PC的中點(diǎn),所以M(1,1,2)所以(1,1,2),(0,0,4),所以cos,所以異面直線AP,BM所成角的余弦值為.(2) 因?yàn)锳N,所以N(0,0)(04),則(1,1,2),(0,2,0),(2,0,4)設(shè)平面PBC的法向量為(x,y,z),則即令x2,解得y0,z1,所以(2,0,1)是平面PBC的一個(gè)法向量因?yàn)橹本€MN與平面PBC所成角的正弦值為,所以|cos,|,解得10,4,所以的值為1.【點(diǎn)睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應(yīng)用,
16、還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18(1);(2)【解析】(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據(jù)正弦定理可得,進(jìn)而求得的值,再根據(jù)三角形的面積公式求解即可.【詳解】(1)由,得,得,由正弦定理得,顯然,同時(shí)除以,得.所以.所以.顯然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【點(diǎn)睛】本題主要考查了正余弦定理與面積公式在解三角形中的運(yùn)用,需要根據(jù)題意用正弦定理進(jìn)行邊角互化,再根據(jù)三角恒等變換進(jìn)行化簡求解等.屬于中檔題.19(1)見解析;(2)見解析【解析】(1)根據(jù),分別是,的中點(diǎn),即可證明
17、,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點(diǎn),證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證【詳解】(1),分別是,的中點(diǎn)平面,平面平面.(2)為正三角形,且D是的中點(diǎn)平面平面,且平面平面,平面平面平面且,平面,且平面.【點(diǎn)睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),中檔題20;.【解析】設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,求出;由題意可知,隨機(jī)變量的可能取值為,相應(yīng)求出概率,求出期望,化簡得,由題意可知,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S
18、得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,所以;由題意可知,隨機(jī)變量的可能取值為, 且,所以隨機(jī)變量的數(shù)學(xué)期望,化簡得,由題意可知,即,化簡得,因?yàn)?,解得,即的最小值?【點(diǎn)睛】本題主要考查概率和期望的求法,屬于??碱}.21(1);(2)或【解析】(1)先由題意得出 ,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時(shí),可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過橢圓的上下頂點(diǎn),所以橢圓焦距等于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度光伏組件背板產(chǎn)業(yè)分析報(bào)告
- 二零二五版共享辦公空間租賃管理合同2篇
- 2024-2025學(xué)年新教材高中歷史第八單元中華民族的抗日戰(zhàn)爭和人民解放戰(zhàn)爭第23課從局部抗戰(zhàn)到全面抗戰(zhàn)學(xué)案新人教版必修中外歷史綱要上
- 2024-2025學(xué)年高中政治專題三信守合同與違約2訂立合同有學(xué)問訓(xùn)練含解析新人教版選修5
- 2024-2025學(xué)年新教材高中英語UNIT1TEENAGELIFESectionⅡDiscoveringUsefulStructures課時(shí)作業(yè)含解析新人教版必修第一冊
- 2025年度臨時(shí)勞動(dòng)合同范本(區(qū)塊鏈技術(shù)應(yīng)用)4篇
- 2025年度城市綠化工程合同及后期養(yǎng)護(hù)服務(wù)3篇
- 2024租賃合同(辦公設(shè)備)
- 2025年度智慧城市建設(shè)戰(zhàn)略合作合同范本3篇
- 2025年度監(jiān)獄門衛(wèi)安全責(zé)任書3篇
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當(dāng)行業(yè)發(fā)展前景預(yù)測及融資策略分析報(bào)告
- 《乘用車越野性能主觀評價(jià)方法》
- 幼師個(gè)人成長發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語試題及解答參考
- 動(dòng)物醫(yī)學(xué)類專業(yè)生涯發(fā)展展示
- 批發(fā)面包采購合同范本
- 乘風(fēng)化麟 蛇我其誰 2025XX集團(tuán)年終總結(jié)暨頒獎(jiǎng)盛典
- 2024年大數(shù)據(jù)分析公司與中國政府合作協(xié)議
- 一年級數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)匯編
評論
0/150
提交評論