安徽省蕪湖縣2021-2022學年高考沖刺數(shù)學模擬試題含解析_第1頁
安徽省蕪湖縣2021-2022學年高考沖刺數(shù)學模擬試題含解析_第2頁
安徽省蕪湖縣2021-2022學年高考沖刺數(shù)學模擬試題含解析_第3頁
安徽省蕪湖縣2021-2022學年高考沖刺數(shù)學模擬試題含解析_第4頁
安徽省蕪湖縣2021-2022學年高考沖刺數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在中,角的對邊分別為,若,且,則的面積為( )ABCD2設復數(shù)滿足,在復平面內對應的點為,則不可能為( )ABCD3雙曲線的漸近線方程為( )ABCD4已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,則的面積為( )ABCD5若向量,則與共線的向量可以是()ABCD6中國古典樂器一般按“八音”分類這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于周禮春官大師,分為“金、石、土、革、絲、木、匏(po)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器

3、,“絲”為彈撥樂器現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為( )ABCD7執(zhí)行如圖所示的程序框圖,若輸出的,則處應填寫( )ABCD8某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是( )ABC16D329下列函數(shù)中,值域為的偶函數(shù)是( )ABCD10已知是定義在上的奇函數(shù),且當時,若,則的解集是( )ABCD11設函數(shù)定義域為全體實數(shù),令有以下6個論斷:是奇函數(shù)時,是奇函數(shù);是偶函數(shù)時,是奇函數(shù);是偶函數(shù)時,是偶函數(shù);是奇函數(shù)時,是偶函數(shù)是偶函數(shù);對任意的實數(shù),那么正確論斷的編號是( )ABCD12函數(shù)的圖象與軸交點的橫坐標構成一個公差為的等差數(shù)列

4、,要得到函數(shù)的圖象,只需將的圖象( )A向左平移個單位B向右平移個單位C向左平移個單位D向右平移個單位二、填空題:本題共4小題,每小題5分,共20分。13已知集合,其中,.且,則集合中所有元素的和為_.14已知點是拋物線上動點,是拋物線的焦點,點的坐標為,則的最小值為_15曲線在點處的切線方程為_16在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.18(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求

5、銳二面角的大小19(12分)如圖1,在等腰梯形中,兩腰,底邊,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.20(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),滿足,證明:.21(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.22(10分)如圖,四棱錐中,四邊形是矩形,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面平面;(2)求二面角的余弦值.參考答

6、案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】由,可得,化簡利用余弦定理可得,解得即可得出三角形面積【詳解】解:,且,化為:,解得故選:【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題2D【解析】依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經(jīng)驗證不滿足,故選:D.【點睛】本題主要考查了復數(shù)的概念、復數(shù)的幾何意義,還考查了推理論證能力,屬于基礎題.3A【解析】將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理

7、得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.4A【解析】根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.5B【解析】先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.6B【解析】分別求得所有基本事件個數(shù)和滿足題意的基

8、本事件個數(shù),根據(jù)古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).7B【解析】模擬程序框圖運行分析即得解.【詳解】;.所以處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.8A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.9C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)

9、為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C考點:1、函數(shù)的奇偶性;2、函數(shù)的值域10B【解析】利用函數(shù)奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數(shù),.當時,為奇函數(shù),由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數(shù)奇偶性的應用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.11A【解析】根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當是偶函數(shù),則,所以,所以是偶函數(shù);當是奇函數(shù)時,則,所以,所以是偶函數(shù);當為非奇非偶函數(shù)時,例如:,則,此時,故錯誤;故正確.故選:A【點睛】本

10、題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.12A【解析】依題意有的周期為.而,故應左移.二、填空題:本題共4小題,每小題5分,共20分。132889【解析】先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當時,集合中最小數(shù);當時,得到集合中最大的數(shù); 故答案為:2889【點睛】本題考查了數(shù)列與集合綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.14【解析】過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當和拋物線相切時,的值最小.再利用直線的斜率公式、導數(shù)的幾何意義求得切點的坐標,從而求得的最小值.【詳解】解:由題意可得,拋物線

11、的焦點,準線方程為,過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當最小時,的值最小.設切點,由的導數(shù)為,則的斜率為,求得,可得,.故答案為:.【點睛】本題考查拋物線的定義,性質的簡單應用,直線的斜率公式,導數(shù)的幾何意義,屬于中檔題.15【解析】對函數(shù)求導后,代入切點的橫坐標得到切線斜率,然后根據(jù)直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點睛】本題主要考查過曲線上一點的切線方程的求法,屬基礎題.16【解析】求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數(shù)的方程.【詳解】雙曲線的半焦距為,

12、則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數(shù),涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.【解析】根據(jù)特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.18(1);(2).【解析】(1) 以分別為軸,軸,軸,建立空間直角坐標系, 設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦

13、值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系設底面正方形邊長為因為所以所以,所以,設平面的法向量是,因為,所以,取則,所以所以,所以直線與平面所成角的正弦值為設平面的法向量是,因為,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為【點睛】本題主要考查了建立平面直角坐標系求解線面夾角以及二面角的問題,屬于中檔題.19(1)證明見解析 (2)【解析】(1)先證,再證,由可得平面 ,從而推出平面 ;(2)

14、建立空間直角坐標系,求出平面的法向量與,坐標代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,所以平面.又,所以平面,因為平面,所以平面平面.易知,且為的中點,所以,所以平面.(2)解:由(1)可知,且四邊形為正方形.設的中點為,以為原點,以,所在直線分別為,軸,建立空間直角坐標系,則,所以,.設平面的法向量為,由得取.設直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運算求解能力和推理論證能力,屬于基礎題.20(1)(2)證明見解析【解析

15、】(1)將函數(shù)轉化為分段函數(shù)或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,當,當時,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,因為,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,所以,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,因為,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點睛】本題主要考查了絕對值函數(shù)的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應用,考查了學生的邏輯推理和運算求解

16、能力.21(1);(2)見解析【解析】(1)聯(lián)立直線和拋物線,消去可得,求出,再代入弦長公式計算即可.(2)由(1)可得,設,計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設,則,.,解得或(舍去),.(2)證明:由(1)可得,設,所以直線的方程為,當時,則,代入拋物線方程,可得,所以直線的斜率,直線的方程為,整理可得,故直線過定點.【點睛】本題第一問考查直線與拋物線相交的弦長問題,需熟記弦長公式.第二問考查直線方程和直線恒過定點問題,需有較強的計算能力,屬于難題.22(1)見解析;(2)【解析】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論