




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若復數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為( )ABCD2已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程
2、為( )ABCD3已知隨機變量滿足,.若,則( )A,B,C,D,4一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則( )ABCD5已知不等式組表示的平面區(qū)域的面積為9,若點, 則的最大值為( )A3B6C9D126已知數(shù)列滿足,且,則的值是( )ABC4D7如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為( )A4BC2D8已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為( )A10B32C40D809函數(shù)在上的最大值
3、和最小值分別為( )A,-2B,-9C-2,-9D2,-210已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為( )A1B2C-1D-211已知與之間的一組數(shù)據(jù):12343.24.87.5若關于的線性回歸方程為,則的值為( )A1.5B2.5C3.5D4.512已知函數(shù)f(x)ebxexb+c(b,c均為常數(shù))的圖象關于點(2,1)對稱,則f(5)+f(1)( )A2B1C2D4二、填空題:本題共4小題,每小題5分,共20分。13已知向量,且 ,則實數(shù)的值是_14某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團活動),排課要求為:語文、數(shù)學、外語、物理、化學各排一節(jié),
4、從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有_種.15正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_16某高中共有1800人,其中高一、高二、高三年級的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數(shù)為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知動圓恒過點,且與直線相切.(1)求圓心的軌跡的方程;(2)設是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點,交軌跡在處的切線于點,問:是否存在實常數(shù)使,若存在,求出的值;若不存在,說明理由.18(
5、12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.()求直線的直角坐標方程與曲線的普通方程;()已知點設直線與曲線相交于兩點,求的值.19(12分)已知拋物線的準線過橢圓C:(ab0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.20(12分)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線和直線的極坐標方程分別是()和(),其中().(1)寫出曲線
6、的直角坐標方程;(2)設直線和直線分別與曲線交于除極點的另外點,求的面積最小值.21(12分)已知函數(shù),其中為自然對數(shù)的底數(shù),(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點?若有,請求出極值點的個數(shù);若沒有,請說明理由22(10分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修工廠規(guī)定當日損壞的元件A在次日早上 8:30 之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作每個工人獨立維修A元件需要時間相同維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期 1 日 2 日 3 日 4 日 5 日 6
7、日 7 日 8 日 9 日 10 日 元件A個數(shù) 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A個數(shù) 12 24 15 15 15 12 15 15 15 24 從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù)()求X的分布列與數(shù)學期望;()若a,b,且b-a=6,求最大值;()目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)參考答案一、選擇題:本題共12小題,每小題5分
8、,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】利用復數(shù)的除法,以及復數(shù)的基本概念求解即可.【詳解】,又的實部與虛部相等,解得.故選:C【點睛】本題主要考查復數(shù)的除法運算,復數(shù)的概念運用.2A【解析】根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,即:,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.3B【解析】根據(jù)二項分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因為隨機變量滿足
9、,.所以服從二項分布,由二項分布的性質(zhì)可得:,因為,所以,由二次函數(shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點睛】本題主要考查二項分布的性質(zhì)及二次函數(shù)的性質(zhì)的應用,還考查了理解辨析的能力,屬于中檔題.4B【解析】根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.5C【解析】分析:先畫出滿足約束條件對應的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數(shù)求得最大值.詳解:作出不等式組對應的平面區(qū)域如圖所示:則
10、,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應用相應的方法求解.6B【解析】 由,可得,所以數(shù)列是公比為的等比數(shù)列, 所以,則, 則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應用,試題有一定的技巧,屬于中檔試題,解決這類問題的關鍵在于
11、熟練掌握等比數(shù)列的有關公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程.7A【解析】由,兩邊平方后展開整理,即可求得,則的長可求【詳解】解:,故選:【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題8D【解析】根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結果.【詳解】由題可知:當時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細
12、心計算,屬基礎題.9B【解析】由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎題.10D【解析】由可得,O在AB的中垂線上,結合圓的性質(zhì)可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質(zhì)應用,幾何性質(zhì)的轉化是求解的捷徑.11D【解析】利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再
13、結合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎題.12C【解析】根據(jù)對稱性即可求出答案【詳解】解:點(5,f(5)與點(1,f(1)滿足(51)22,故它們關于點(2,1)對稱,所以f(5)+f(1)2,故選:C【點睛】本題主要考查函數(shù)的對稱性的應用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2=2(1,2)(x,1)=(2x,3),3(1+2x)4(2x)=1
14、,解得:x=點睛:由向量的數(shù)乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值若=(a1,a2),=(b1,b2),則a1a2+b1b2=1,a1b2a2b1=1 141344【解析】分四種情況討論即可【詳解】解:數(shù)學排在第一節(jié)時有:數(shù)學排在第二節(jié)時有:數(shù)學排在第三節(jié)時有:數(shù)學排在第四節(jié)時有: 所以共有1344種故答案為:1344【點睛】考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.152【解析】先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數(shù)列、等差數(shù)列的有關性質(zhì)以及等比數(shù)列求
15、積、求最值的有關運算,中檔題.16【解析】由三個年級人數(shù)成等差數(shù)列和總人數(shù)可求得高二年級共有人,根據(jù)抽樣比可求得結果.【詳解】設高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數(shù)為人故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數(shù)列的相關知識,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2)存在,.【解析】(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結合已知點的坐標,即可求得方程;(2)由拋物線方程求得點的坐標,設出直線的方程,利用導數(shù)求得點的坐標,聯(lián)立直線的方程和拋物線方程,結合韋達定理,求得,
16、進而求得與之間的大小關系,即可求得參數(shù).【詳解】(1)由題意得,點與點的距離始終等于點到直線的距離,由拋物線的定義知圓心的軌跡是以點為焦點,直線為準線的拋物線,則,.圓心的軌跡方程為.(2)因為是軌跡上橫坐標為2的點,由(1)不妨取,所以直線的斜率為1.因為,所以設直線的方程為,.由,得,則在點處的切線斜率為2,所以在點處的切線方程為.由得所以,所以.由消去得,由,得且.設,則,.因為點,在直線上,所以,所以,所以.故存在,使得.【點睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導數(shù)的幾何意義,屬綜合性中檔題.18()直線的直角坐標方程為;曲線的普通方程為;().【解析】(
17、I)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設是方程的兩根,則有.【點睛】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.19(1);(2)或.【解析】(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設直線方程,與橢圓方程聯(lián)立,運用
18、根與系數(shù)關系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,直線,點F到直線l的距離為,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設方程為,聯(lián)立,消去得,設,線段AB的中垂線交直線l于點Q,所以橫坐標為3,平方整理得,解得或(舍去),所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關系,要熟練應用根與系數(shù)關系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.20(1);(2)16.【解析】(1)將極坐標方程化為直角坐標方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標方程,得出,利用三角形面積公式,結合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷飲飲料分層管理制度
- 汽車集市裝修方案(3篇)
- 平臺規(guī)范售價管理制度
- 密碼電報撰寫管理制度
- 分享經(jīng)濟公司管理制度
- 學校營養(yǎng)早餐管理制度
- 協(xié)會項目績效管理制度
- 古建住宅改造方案(3篇)
- 菜窖改造維修方案(3篇)
- 臨建費用分攤方案(3篇)
- 租戶裝修期內(nèi)退租協(xié)議書
- 廣東省廣州荔灣區(qū)真光中學2025年高二下物理期末學業(yè)水平測試試題含解析
- 茶籽油批發(fā)協(xié)議書
- 七匹狼存貨管理:供應鏈視角下的分析
- 2025屆柳州市重點中學八年級物理第二學期期末考試模擬試題含解析
- GB/T 36066-2025潔凈室及相關受控環(huán)境檢測技術要求與應用
- 西藏事業(yè)單位c類歷年真題
- 2024年秋兒童發(fā)展問題的咨詢與輔導終考期末大作業(yè)案例分析1-5答案
- 湖南省長沙市雅禮教育集團2023-2024學年七年級下學期期末語文試題
- (正式版)JBT 11270-2024 立體倉庫組合式鋼結構貨架技術規(guī)范
- GB∕T 33212-2016 錘上鋼質(zhì)自由鍛件 通用技術條件
評論
0/150
提交評論