




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、最小二乘法和線性回歸金融計(jì)量學(xué)2 目前中國(guó)的資本市場(chǎng)逐漸成熟,投資于股市成為眾多企業(yè)乃至個(gè)人的重要理財(cái)方式。因此利用上市公司當(dāng)年的公開的財(cái)務(wù)指標(biāo)對(duì)來年盈利狀況予以預(yù)測(cè),就成為投資人最重要的決策依據(jù)。是什么決定性的因素影響到上市公司的股票價(jià)格?公司的發(fā)展與這種決定性因素的數(shù)量關(guān)系究竟是什么?怎樣具體測(cè)定公司的發(fā)展與這種決定性因素的數(shù)量關(guān)系?如何對(duì)未來公司的股票價(jià)格進(jìn)行預(yù)測(cè)?哪些因素最重要?引子: 我們通常選擇什么樣的股票給我們帶來盈利呢?3本章要點(diǎn)回歸分析和回歸函數(shù)經(jīng)典線性回歸模型的最小二乘估計(jì)擬合優(yōu)度檢驗(yàn)回歸系數(shù)的t檢驗(yàn)和置信區(qū)間檢驗(yàn)多變量模型的回歸系數(shù)的F檢驗(yàn)回歸模型預(yù)測(cè)模型選擇與案例分析4
2、第一節(jié) 最小二乘法的基本屬性一、有關(guān)回歸的基本介紹 金融、經(jīng)濟(jì)變量之間的關(guān)系,大體上可以分為兩種(確定關(guān)系、非確定關(guān)系): (1)函數(shù)關(guān)系:Y=f(X1,X2,.,XP),其中Y的值是由Xi(i=1,2.p)所唯一確定的。 (2)相關(guān)關(guān)系: Y=f(X1,X2,.,XP) ,這里Y的值不能由Xi(i=1,2.p)精確的唯一確定。5回歸的古典意義: 高爾頓遺傳學(xué)的回歸概念 ( 父母身高與子女身高的關(guān)系)回歸的現(xiàn)代意義: 一個(gè)應(yīng)變量對(duì)若干解釋變量 變量 依存關(guān)系 的研究回歸的目的(實(shí)質(zhì)): 由固定的解釋變量去估計(jì) 和預(yù)測(cè)應(yīng)變量的平均值6圖2-1 貨幣供應(yīng)量和GDP散點(diǎn)圖7由圖中的點(diǎn)確定線的過程就是
3、回歸。對(duì)于變量間的相關(guān)關(guān)系,我們可以根據(jù)大量的統(tǒng)計(jì)資料,找出它們?cè)跀?shù)量變化方面的規(guī)律(即“平均”的規(guī)律),這種統(tǒng)計(jì)規(guī)律所揭示的關(guān)系就是回歸關(guān)系,所表示的數(shù)學(xué)方程就是回歸方程或回歸模型?;貧w分析揭示的是被解釋變量與解釋變量之間的平均關(guān)系。8簡(jiǎn)單線性回歸方程(總體回歸方程PRF): yt被稱作因變量/被解釋變量/結(jié)果變量;xt被稱作自變量/解釋變量/原因變量;、為參數(shù),或稱回歸系數(shù);t通常被稱為隨機(jī)誤差/擾動(dòng)項(xiàng),簡(jiǎn)稱誤差項(xiàng)。模型中引入t的原因?對(duì)“線性”的理解?9總體回歸方程(PRF)表示變量之間的真實(shí)關(guān)系,有時(shí)也被稱為數(shù)據(jù)生成過程(DGP),PRF中的、值是真實(shí)值樣本回歸方程(SRF)是根據(jù)所選
4、樣本估算的變量之間的關(guān)系函數(shù),方程為: 總體y值被分解為兩部分:模型擬合值( )和殘差項(xiàng)( ),注意:SRF中沒有誤差項(xiàng),一般假定tN 10 樣本回歸函數(shù)與總體回歸函數(shù)的關(guān)系 SRF PRF A 一元線性回歸主要解決下列一些問題: (1)利用樣本對(duì)未知參數(shù)、 進(jìn)行估計(jì); (2)對(duì)回歸模型作顯著性檢驗(yàn); (3)當(dāng)x=x0時(shí)對(duì)Y的取值作預(yù)測(cè)。12二、參數(shù)的最小二乘估計(jì)(一) 最小二乘法的基本原則普通最小二乘法(簡(jiǎn)記OLS);最小二乘法的基本原則是:最優(yōu)擬合直線應(yīng)該使各點(diǎn)到直線的距離的和最小,也可表述為距離的平方和最小。實(shí)際上是使殘差平方和(簡(jiǎn)記RSS) 最小。求偏導(dǎo)并另其為零可得:13(二)最小二
5、乘估計(jì)量的性質(zhì)和分布 經(jīng)典線性回歸模型的基本假設(shè):(1) ,即殘差具有零均值;(2)var t /2(n-2),則拒絕H0 ,接受H1 ; 若 |t| t /2(n-2),則拒絕H1 ,接受H0 28 圖2-5 雙側(cè)檢驗(yàn)拒絕區(qū)域和非拒絕區(qū)域分布29(1)用OLS法回歸方程得到的估計(jì)值 及其標(biāo)準(zhǔn)差 。(2)選擇一個(gè)顯著性水平(通常為5%),這相當(dāng)于選擇95%的置信度。查t分布表,獲得自由度為T-2的臨界值 。(3)所建立的置信區(qū)間為( , )(4)如果零假設(shè)值 落在置信區(qū)間外,我們拒絕 的原假設(shè);反之,不能拒絕。 (二)置信區(qū)間檢驗(yàn)30 (三)t檢驗(yàn)與置信區(qū)間檢驗(yàn)的關(guān)系因此,實(shí)際上t檢驗(yàn)法與置信
6、區(qū)間法提供的結(jié)果是完全一樣的。(四)第一類錯(cuò)誤和第二類錯(cuò)誤 錯(cuò)誤地拒絕;錯(cuò)誤的接受。(五)P值和檢驗(yàn)的勢(shì)31第三節(jié) 多變量線性回歸模型的統(tǒng)計(jì)檢驗(yàn)一、多變量模型的簡(jiǎn)單介紹多元線性回歸一般方程: t=1,2,3.T其中:解釋變量的數(shù)目為k-1(x2t,x3t,xkt)個(gè),j稱為偏回歸系數(shù),(12.k)分別衡量了解釋變量對(duì)因變量y的邊際影響的程度。矩陣形式為y是T1矩陣,X是Tk矩陣,是k1矩陣,u是T1矩陣多元線性回歸模型的基本假定 :假設(shè)1,解釋變量是非隨機(jī)的或固定的,且各X之間互不相關(guān)(無多重共線性)。 假設(shè)2,隨機(jī)誤差項(xiàng)具有零均值、同方差及不序列相關(guān)性。假設(shè)3,解釋變量與隨機(jī)項(xiàng)不相關(guān)。假設(shè)4
7、,隨機(jī)項(xiàng)滿足正態(tài)分布。 3233在多變量回歸中殘差向量為: 殘差平方和為: 34可以得到多變量回歸系數(shù)的估計(jì)表達(dá)式 同樣我們可以得到多變量回歸模型殘差的樣本方差參數(shù)的協(xié)方差矩陣 35OLS估計(jì)量的性質(zhì):1、線性2、無偏性3、最小方差性同時(shí),隨著樣本容量增加,參數(shù)估計(jì)量具有漸進(jìn)無偏性、漸進(jìn)有效性、一致性。36二、擬合優(yōu)度檢驗(yàn)在多變量模型中,我們想知道解釋變量一起對(duì)因變量y變動(dòng)的解釋程度。我們將度量這個(gè)信息的量稱為多元判定系數(shù)R2。在多變量模型中,下面這個(gè)等式也成立:TSS=ESS+RSS其中,TSS為總離差平方和;ESS為回歸平方和;RSS為殘差平方和。37與雙變量模型類似,定義如下:即,R2是
8、回歸平方和與總離差平方和的比值;與雙變量模型唯一不同的是,ESS值與多個(gè)解釋變量有關(guān)。R2的值在0與1之間,越接近于1,說明估計(jì)的回歸直線擬合得越好。38三、假設(shè)檢驗(yàn)(一)t檢驗(yàn)在多元回歸模型中,t統(tǒng)計(jì)量為:均服從自由度為(n-k)的t分布。下面的檢驗(yàn)過程跟雙變量線性回歸模型的檢驗(yàn)過程一樣。 39(二)、F檢驗(yàn)F檢驗(yàn)的第一個(gè)用途是對(duì)所有的回歸系數(shù)全為0的零假設(shè)的檢驗(yàn)。第二個(gè)用途是用來檢驗(yàn)有關(guān)部分回歸系數(shù)的聯(lián)合檢驗(yàn),就方法而言,兩種用途是完全沒有差別的。 40為了解聯(lián)合檢驗(yàn)是如何進(jìn)行的,考慮無約束回歸模型: 假設(shè)我們想檢驗(yàn)其中q個(gè)回歸系數(shù)是否同時(shí)為零,將所有變量分為兩組: 如果假定所有后q個(gè)系數(shù)
9、都為零,即建立零假設(shè): ,則修正的模型將變?yōu)橛屑s束回歸模型(restricted regression):41關(guān)于上述零假設(shè)的檢驗(yàn)很簡(jiǎn)單。若從模型中去掉這q個(gè)變量,對(duì)有約束回歸方程進(jìn)行估計(jì)的話,得到的誤差平方和 肯定會(huì)比相應(yīng)的無約束回歸方程的誤差平方和 大。檢驗(yàn)的統(tǒng)計(jì)量為:統(tǒng)計(jì)量服從分子自由度為q,分母自由度為N-K的F分布。 42當(dāng)q=k-1時(shí)(即為解釋變量個(gè)數(shù))建立原假設(shè)和備擇假設(shè): H0: 1=2=3= =k=0 H1: j不全為0則統(tǒng)計(jì)量F=(ESS/RSS)*(n-k)/(k-1)給定顯著性水平,可得到臨界值F(k-1,n-k),由樣本求出統(tǒng)計(jì)量F的數(shù)值,通過 F F(k-1,n-k
10、) 或 FF(k-1,n-k)來拒絕或接受原假設(shè)H0,以判定原方程總體上的線性關(guān)系是否顯著成立。 43F檢驗(yàn)與R2有密切的聯(lián)系?;叵?,則 ,兩個(gè)統(tǒng)計(jì)量具有相同的因變量,因此 將上面的兩個(gè)方程代入,檢驗(yàn)的統(tǒng)計(jì)量可以寫成: 說明:變量的顯著性檢驗(yàn) 方程的總體線性關(guān)系顯著每個(gè)解釋變量對(duì)被解釋變量的影響都是顯著的。 因此,必須對(duì)每個(gè)解釋變量進(jìn)行顯著性檢驗(yàn),以決定是否作為解釋變量被保留在模型中。 這一檢驗(yàn)是由對(duì)變量的 t 檢驗(yàn)完成的。注意:一元線性回歸中,t檢驗(yàn)與F檢驗(yàn)一致 (不過多元的就沒那么簡(jiǎn)單的關(guān)系了!) 一方面,t檢驗(yàn)與F檢驗(yàn)都是對(duì)相同的原假設(shè)H0:1=0 進(jìn)行檢驗(yàn); 另一方面,兩個(gè)統(tǒng)計(jì)量之間
11、有如下關(guān)系: 46第四節(jié) 預(yù)測(cè)一、預(yù)測(cè)的概念和類型(一)預(yù)測(cè)的概念 金融計(jì)量學(xué)中,所謂預(yù)測(cè)就是根據(jù)金融經(jīng)濟(jì)變量的過去和現(xiàn)在的發(fā)展規(guī)律,借助計(jì)量模型對(duì)其未來的發(fā)展趨勢(shì)和狀況進(jìn)行描述、分析,形成科學(xué)的假設(shè)和判斷。 47(二)預(yù)測(cè)原理?xiàng)l件期望(conditional expectations),在t期Y的t+1期的條件期望值記作 ,它表示的是在所有已知的t期的信息的條件下,Y在t+1期的期望值。假定在t期,我們要對(duì)因變量Y的下一期(即t+1期)值進(jìn)行預(yù)測(cè),則記作 。 48 在t期對(duì)Y的下一期的所有預(yù)測(cè)值中,Y的條件期望值是最優(yōu)的(即具有最小方差),因此,我們有: () 49(三)預(yù)測(cè)的類型:(1)無
12、條件預(yù)測(cè)和有條件預(yù)測(cè)所謂無條件預(yù)測(cè),是指預(yù)測(cè)模型中所有的解釋變量的值都是已知的,在此條件下所進(jìn)行的預(yù)測(cè)。所謂有條件預(yù)測(cè),是指預(yù)測(cè)模型中某些解釋變量的值是未知的,因此想要對(duì)被解釋變量進(jìn)行預(yù)測(cè),必須首先預(yù)測(cè)解釋變量的值。50(2)樣本內(nèi)(in-sample)預(yù)測(cè)和樣本外(out-of-sample)預(yù)測(cè)所謂樣本內(nèi)預(yù)測(cè)是指用全部觀測(cè)值來估計(jì)模型,然后用估計(jì)得到的模型對(duì)其中的一部分觀測(cè)值進(jìn)行預(yù)測(cè)。樣本外預(yù)測(cè)是指將全部觀測(cè)值分為兩部分,一部分用來估計(jì)模型,然后用估計(jì)得到的模型對(duì)另一部分?jǐn)?shù)據(jù)進(jìn)行預(yù)測(cè)。 51(3)事前預(yù)測(cè)和事后模擬顧名思義,事后模擬就是我們已經(jīng)獲得要預(yù)測(cè)的值的實(shí)際值,進(jìn)行預(yù)測(cè)是為了評(píng)價(jià)預(yù)測(cè)
13、模型的好壞。事前預(yù)測(cè)是我們?cè)诓恢酪蜃兞空鎸?shí)值的情況下對(duì)其的預(yù)測(cè)。 52(4)一步向前(one-step-ahead)預(yù)測(cè)和多步向前(multi-step-ahead)預(yù)測(cè)所謂一步向前預(yù)測(cè),是指僅對(duì)下一期的變量值進(jìn)行預(yù)測(cè),例如在t期對(duì)t+1期的值進(jìn)行預(yù)測(cè),在t+1期對(duì)t+2期的值進(jìn)行的預(yù)測(cè)等。多步向前預(yù)測(cè)則不僅是對(duì)下一期的值進(jìn)行預(yù)測(cè),也對(duì)更下期值進(jìn)行預(yù)測(cè),例如在t期對(duì)t+1期、t+2期、t+r期的值進(jìn)行預(yù)測(cè)。 53二、預(yù)測(cè)的評(píng)價(jià)標(biāo)準(zhǔn)、平均預(yù)測(cè)誤差平方和(mean squared error,簡(jiǎn)記MSE)平均預(yù)測(cè)誤差絕對(duì)值(mean absolute error,簡(jiǎn)記MAE)。變量的MSE定義為
14、:MSE= ()其中 的預(yù)測(cè)值, 實(shí)際值,T時(shí)段數(shù)54變量的MAE定義如下: MAE= ,變量的定義同前 ()可以看到,MSE和MAE度量的是誤差的絕對(duì)大小,只能通過與該變量平均值的比較來判斷誤差的大小,誤差越大,說明模型的預(yù)測(cè)效果越不理想。 552、Theil不相等系數(shù) 其定義為: ()注意,U的分子就是MSE的平方根,而分母使得U總在0與1之間。如果U=0,則對(duì)所有的t, 完全擬合;如果U=1,則模型的預(yù)測(cè)能力最差。因此,Theil不等系數(shù)度量的是誤差的相對(duì)大小。56Theil不等系數(shù)可以分解成如下有用的形式:其中 分別是序列 和 的平均值和標(biāo)準(zhǔn)差, 是它們的相關(guān)系數(shù),即: () 57定義
15、不相等比例如下: () () ()58偏誤比例 表示系統(tǒng)誤差,因?yàn)樗攘康氖悄M序列與實(shí)際序列之間的偏離程度。方差比例 表示的是模型中的變量重復(fù)其實(shí)際變化程度的能力。協(xié)方差比例 度量的是非系統(tǒng)誤差,即反映的是考慮了與平均值的離差之后剩下的誤差。理想的不相等比例的分布是 。比例 分別稱為U的偏誤比例,方差比例,協(xié)方差比例。它們是將模型誤差按特征來源分解的有效方法( )。59第五節(jié):模型選擇一、“好”模型具有的特性1、節(jié)省性(parsimony) 一個(gè)好的模型應(yīng)在相對(duì)精確反應(yīng)現(xiàn)實(shí)的基礎(chǔ)上盡可能的簡(jiǎn)單。2、可識(shí)別性(identifiability) 對(duì)于給定的一組數(shù)據(jù),估計(jì)的參數(shù)要有唯一確定值。60
16、3、高擬合性(goodness of fit) 回歸分析的基本思想是用模型中包含的變量來解釋被解釋變量的變化,因此解釋能力的高低就成為衡量模型好壞的重要的標(biāo)準(zhǔn)。4、理論一致性(theoretical consistency) 即使模型的擬合性很高,但是如果模型中某一變量系數(shù)的估計(jì)值符號(hào)與經(jīng)濟(jì)理論不符,那么這個(gè)模型就是失敗的。615、預(yù)測(cè)能力(predictive power) 著名經(jīng)濟(jì)學(xué)家弗里德曼()認(rèn)為:“對(duì)假設(shè)(模型)的真實(shí)性唯一有效的檢驗(yàn)就是將預(yù)測(cè)值與經(jīng)驗(yàn)值相比較”。因此一個(gè)好的模型必須有對(duì)未來的較強(qiáng)的預(yù)測(cè)能力。62二、用于預(yù)測(cè)的模型的選擇因?yàn)镽2將隨著模型解釋變量的增多而不斷增加,按照
17、此標(biāo)準(zhǔn)我們將不會(huì)得到最佳的預(yù)測(cè)模型。因此必須對(duì)由于解釋變量增多而造成自由度丟失施加一個(gè)懲罰項(xiàng),其中的一個(gè)標(biāo)準(zhǔn)就是:63對(duì)自由度丟失懲罰更為嚴(yán)格的標(biāo)準(zhǔn): Akaike的信息準(zhǔn)則(Akaike information criterion,簡(jiǎn)記為AIC)和Schwarz的信息準(zhǔn)則(Schwarz information criterion,簡(jiǎn)記為SC) 64其中 是方程隨機(jī)誤差項(xiàng)方差的估計(jì)值,k是解釋變量的個(gè)數(shù),T是樣本容量??梢钥吹?,AIC和SC 的懲罰項(xiàng) 、 比 更為嚴(yán)厲,而且相對(duì)來說SC標(biāo)準(zhǔn)對(duì)自由度的懲罰比AIC更為嚴(yán)厲。無論是AIC標(biāo)準(zhǔn)還是SC標(biāo)準(zhǔn),從預(yù)測(cè)的角度來看,度量值越低,模型的預(yù)測(cè)會(huì)更好。 65本章小節(jié) 本章內(nèi)容在計(jì)量經(jīng)濟(jì)學(xué)中是最基礎(chǔ)也是最重要的部分。在這一章中,我們首先介紹了最小二乘法及其估計(jì)量的性質(zhì)和分布。在此基礎(chǔ)上我們對(duì)一元線性回歸模型的統(tǒng)計(jì)檢驗(yàn)進(jìn)行了詳細(xì)討論,接著將模型擴(kuò)展,討論了多元線性回歸模型。在用模型進(jìn)行預(yù)測(cè)時(shí),主要有兩種情況:即有條件預(yù)測(cè)和無
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合肥幼兒師范高等專科學(xué)?!秳?chuàng)新理論與方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆政法學(xué)院《新聞算法與編程》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津渤海職業(yè)技術(shù)學(xué)院《衛(wèi)星通信系統(tǒng)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川國(guó)際標(biāo)榜職業(yè)學(xué)院《建筑工程造價(jià)管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古大學(xué)《新能源汽車概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024屆河北省石家莊二中實(shí)驗(yàn)學(xué)校高三下學(xué)期仿真模擬歷史試卷
- 2024-2025學(xué)年山東省聊城市第二中學(xué)高一上學(xué)期12月月考?xì)v史試卷
- 新疆醫(yī)科大學(xué)《高層建筑智慧施工》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州科技貿(mào)易職業(yè)學(xué)院《建筑CAD》2023-2024學(xué)年第二學(xué)期期末試卷
- 嶺南師范學(xué)院《高電壓技術(shù)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 作品集合同范本
- 保安員綜合理論考試題庫備考500題(含各題型)
- X證書失智老年人照護(hù)身體綜合照護(hù)講解
- 2025勞動(dòng)合同法重點(diǎn)法條導(dǎo)讀附案例詳解
- 2025年內(nèi)蒙古自治區(qū)政府工作報(bào)告測(cè)試題及參考答案
- 2024年全國(guó)中學(xué)生生物學(xué)聯(lián)賽試題及答案詳解
- 2025年度花卉產(chǎn)業(yè)大數(shù)據(jù)服務(wù)平臺(tái)建設(shè)合同2篇
- 2025年度花卉產(chǎn)業(yè)大數(shù)據(jù)平臺(tái)建設(shè)合同3篇
- 小學(xué)班會(huì)-交通安全伴我行(共25張課件)
- 建筑施工現(xiàn)場(chǎng)安全警示(案例)
- 《生產(chǎn)與運(yùn)作管理 第4版》課件 第1、2章 概論、需求預(yù)測(cè)與管理
評(píng)論
0/150
提交評(píng)論