




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為( )AB40C16D2數(shù)列滿足:,為其前n項和,則( )A0B1C3D43已知,滿足條件(為常數(shù)),若目標函數(shù)的最大值為9,則( )ABCD4在中,為中點,且,若
2、,則( )ABCD5若的展開式中的系數(shù)之和為,則實數(shù)的值為( )ABCD16已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則( )ABCD7復數(shù)滿足,則復數(shù)在復平面內(nèi)所對應的點在( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限8已知是雙曲線的左、右焦點,若點關(guān)于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()ABCD9復數(shù)()ABC0D10數(shù)列an是等差數(shù)列,a11,公差d1,2,且a4+a10+a1615,則實數(shù)的最大值為()ABCD11已知函數(shù),則,的大小關(guān)系為( )ABCD12已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實數(shù)( )ABCD二、填空題
3、:本題共4小題,每小題5分,共20分。13已知a,b均為正數(shù),且,的最小值為_.14已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是_15在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_.16二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值18(12分)已知點,若點滿足.()求點的軌跡方程; ()過點的直線與()中曲線相交于兩點,為坐標原點, 求面積的最大值及此時直線的方程.19(12分)
4、在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45的直線,交于點,且的最大值為,求的值.20(12分)在ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2b2)a2ccosC+ac2cosA(1)求角B的大?。唬?)若ABC外接圓的半徑為,求ABC面積的最大值.21(12分)的內(nèi)角,的對邊分別為,其面積記為,滿足.(1)求;(2)若,求的值.22(10分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,
5、按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示. 據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?參考答案一、選擇題:本題共12小題,每小題5
6、分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉(zhuǎn)化能力.2D【解析】用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,所以,+,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.3B【解析】由目
7、標函數(shù)的最大值為9,我們可以畫出滿足條件 件為常數(shù))的可行域,根據(jù)目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標函數(shù)的最大值為9,可得直線與直線的交點,使目標函數(shù)取得最大值,將,代入得:故選:【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值4B【解析】選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】, ,.故選:B.【點睛】本題考
8、查了平面向量的線性運算,平面向量基本定理,屬于基礎題.5B【解析】由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.6A【解析】由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:A.【點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎題.7B【解析】設,則,可得,即可得到,進而找到對應的點所在象限.【詳解】設,則,所以復數(shù)在復平面內(nèi)所對應的
9、點為,在第二象限.故選:B【點睛】本題考查復數(shù)在復平面內(nèi)對應的點所在象限,考查復數(shù)的模,考查運算能力.8B【解析】先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關(guān)于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.9C【解析】略10D【解析】利用等差數(shù)列通項公式推導出,由d1,2,能求出實數(shù)取最大值【詳解】數(shù)列an是等差數(shù)列,a11,公差d1,2,且a4+a10+a1615,1+3d+(1+9d)+1+15d15,解得
10、,d1,2,2是減函數(shù),d1時,實數(shù)取最大值為故選D【點睛】本題考查實數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是基礎題11B【解析】可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學生的運算求解能力.12B【解析】求出,把坐標代入方程可求得【詳解】據(jù)題意,得,所以,所以故選:B【點睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值二、填空題:本題共4小題,每小題5分,共20分。13【解析】本題首先可以根據(jù)將化簡為,然后根據(jù)基
11、本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.14【解析】利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出 的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有 ,即而當時滿足題意,解得或所以答案為【點睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時的分類討論化簡15【解析】由中位線定理和正方體性質(zhì)得
12、,從而作出異面直線所成的角,在三角形中計算可得【詳解】如圖,連接,分別為棱的中點,又正方體中,即是平行四邊形,(或其補角)就是直線與直線所成角,是等邊三角形,60,其正切值為故答案為:【點睛】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角16【解析】由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項【詳解】由題意,展開式通項為,由得,常數(shù)項為故答案為:【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)特征值為或【解析】(1)先設矩陣,根據(jù),按照運
13、算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項式等于,即可求出矩陣的特征值【詳解】解:(1)設矩陣由題意,因為,所以 ,即所以,(2)矩陣的特征多項式,令,解得或,所以矩陣的特征值為1或【點睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學生的劃歸與轉(zhuǎn)化能力和運算求解能力.18();()面積的最大值為,此時直線的方程為.【解析】(1)根據(jù)橢圓的定義求解軌跡方程;(2)設出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:()由定義法可得,點的軌跡為橢圓且,. 因此橢圓的方程為. ()設直線的方程為與橢圓交于點, ,聯(lián)立直線與橢圓的方程消去可得,即,. 面積可
14、表示為令,則,上式可化為,當且僅當,即時等號成立,因此面積的最大值為,此時直線的方程為.【點睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點,若點滿足且,則的軌跡是橢圓;(2)已知點,若點滿足且,則的軌跡是雙曲線.19(1),;(2)或【解析】(1)將曲線的極坐標方程和直線的參數(shù)方程化為直角坐標方程,聯(lián)立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據(jù)點到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數(shù)
15、方程為(為參數(shù))故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或【點睛】解題關(guān)鍵是掌握極坐標和參數(shù)方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.20(1)B(2)【解析】(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2b2)ca2cosC+ac2cosA,即2bcosBacosC+ccosA由正弦定理可得,2sinBcosBsinAcosC+sinC
16、cosAsin(A+C)sinB,因為,所以,所以B;(2)由正弦定理可得,b2RsinB2,由余弦定理可得,b2a2+c22accosB,即a2+c2ac4,因為a2+c22ac,所以4a2+c2acac,當且僅當ac時取等號,即ac的最大值4,所以ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用,屬于中檔題.21(1);(2)【解析】(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【詳解】(1)因為,所以由三角形面積公式及平面向量數(shù)量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.【點睛】本題考查了正弦定理在解三角形中的應用,三角形面積公式的應用,平面向量數(shù)量積的運算,正弦和角公式及輔助角公式的簡單應用,屬于基礎題.22(1)30;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 介紹超市活動方案
- 倉儲公司走秀活動方案
- 倉庫擴容活動方案
- 薇諾娜品牌手冊
- 代賬公司周年活動方案
- 以樂之名活動方案
- 以色列交友活動方案
- 儀表文明活動方案
- 任務類親子活動方案
- 企業(yè)福利活動方案
- 工程周轉(zhuǎn)材料管理制度
- 2021公考題目及答案
- 2024年宿遷市泗陽縣事業(yè)單位招聘筆試真題
- DB32/T 4273-2022計算機輔助人工處方審核標準化工作規(guī)范
- 人教版(2024)七年級下冊英語期末復習:完形填空 專項練習題(含答案)
- 2025年中國ECTFE樹脂行業(yè)市場前景預測及投資價值評估分析報告
- 2025年中國氫氟酸市場研究報告
- 礦井電氣安全培訓課件
- 景區(qū)設備聯(lián)營協(xié)議書
- 2025年虛擬現(xiàn)實與增強現(xiàn)實技術(shù)考試試題及答案
- 旋挖鉆孔灌注樁施工流程課件
評論
0/150
提交評論