professor s.liu的經(jīng)典有限元實用教程special purpose elements_第1頁
professor s.liu的經(jīng)典有限元實用教程special purpose elements_第2頁
professor s.liu的經(jīng)典有限元實用教程special purpose elements_第3頁
professor s.liu的經(jīng)典有限元實用教程special purpose elements_第4頁
professor s.liu的經(jīng)典有限元實用教程special purpose elements_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、1Finite Element MethodSPECIAL PURPOSE ELEMENTSA Practical Course G. R. Liu and S. S. QuekCHAPTER 10: 2CONTENTSCRACK TIP ELEMENTSMETHODS FOR INFINITE DOMAINSInfinite elements formulated by mappingGradual damping elementsCoupling of FEM and BEMCoupling of FEM and SEMFINITE STRIP ELEMENTSSTRIP ELEMENT

2、METHOD3CRACK TIP ELEMENTSFracture mechanics singularity point at crack tipConventional finite elements do not give good approximation at/near the crack tip.4CRACK TIP ELEMENTSFrom fracture mechanics,(Near crack tip)(Mode I fracture)5CRACK TIP ELEMENTSSpecial purpose crack tip element with middle nod

3、es shifted to quarter position:6CRACK TIP ELEMENTSx = -0.5 (1-)x1 + (1+)(1-)x2 + 0.5 (1+) x3 u = -0.5 (1-)u1 + (1+)(1-)u2 + 0.5 (1+) u3 (Measured from node 1)Move node 2 to L/4 positionx1 = 0, x2 = L/4, x3 = L, u1 = 0 x = 0.25(1+)(1-)L + 0.5 (1+)L u = (1+)(1-)u2+0.5 (1+) u3 7CRACK TIP ELEMENTSSimpli

4、fying,x = 0.25(1+)2L u= (1+)(1-)u2+0.5u3 Along x-axis, x = rr = 0.25(1+)2L or u = 2(r/L) (1-)u2 + 0.5u3 Note: Displacement is proportional to rwhereTherefore,Note: Strain (hence stress) is proportional to 1/r8CRACK TIP ELEMENTSTherefore, by shifting the nodes to quarter position, we approximating th

5、e stress and displacements more accurately.Other crack tip elements:9METHODS FOR INFINITE DOMAINInfinite elements formulated by mapping (Zienkiewicz and Taylor, 2000)Gradual damping elementsCoupling of FEM and BEMCoupling of FEM and SEM10Infinite elements formulated by mappingUse shape functions to

6、approximate decaying sequence:In 1D:(Coordinate interpolation)11Infinite elements formulated by mappingIf the field variable is approximated by polynomial,Substituting will give function of decaying form, For 2D (3D):12Infinite elements formulated by mappingElement PP1QQ1RR1 :with13Infinite elements

7、 formulated by mappingInfinite elements are attached to conventional FE mesh to simulate infinite domain.14Gradual damping elementsFor vibration problems with infinite domainUses conventional finite elements, hence great versatilityStudy of lamb waves propagation15Gradual damping elementsAttaching a

8、dditional damping elements outside area of interest to damp down propagating waves16Gradual damping elementsStructural damping is defined asEquation of motion with damping under harmonic load:Since,Therefore,(Since the energy dissipated by damping is usually independent of )17Gradual damping element

9、sComplex stiffnessReplace E with E(1 + i) where is the material loss factor. Therefore,Hence,18Gradual damping elementsFor gradual increase in damping,Complex modulus for the kth damping element setInitial modulusInitial material loss factorConstant factorSufficient damping such that the effect of t

10、he boundary is negligible.Damping is gradual enough such that there is no reflection cause by a sudden damped condition. 19Coupling of FEM and BEMFEM used for interior and the BEM used for exterior which can be extended to infinity Liu, 1992Coupling of FEM and SEMFEM used for interior and the SEM us

11、ed for exterior which can be extended to infinity Liu, 200220FINITE STRIP ELEMENTSDeveloped by Y. K. Cheung, 1968Used for problems with regular geometry and simple boundary.Key is in obtaining the shape functions.21FINITE STRIP ELEMENTS(Approximation of displacement function)(Polynomial)(Continuous

12、series)Polynomial function must represent state of constant strain in x direction and continuous series must satisfy end conditions of the strip. Together the shape function must satisfy compatibility of displacements with adjacent strips.22FINITE STRIP ELEMENTSY(0) = 0, Y(0) = 0, Y(a) = 0 and Y(a)

13、= 0 am = , 2, 3, , m Satisfies23FINITE STRIP ELEMENTSTherefore, 24FINITE STRIP ELEMENTSorwherei = 1, 2, 3 ,4 The remaining procedure is the same as the FEM. The size of the matrix is usually much smaller and makes the solving much easier.25STRIP ELEMENT METHOD (SEM)Proposed by Liu and co-workers Liu et al. 1994, 1995; Liu and Xi, 2001Solving wave propagation in composite laminates.S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論