流體力學(xué)復(fù)習(xí)資料及英文專(zhuān)有名詞解釋_第1頁(yè)
流體力學(xué)復(fù)習(xí)資料及英文專(zhuān)有名詞解釋_第2頁(yè)
流體力學(xué)復(fù)習(xí)資料及英文專(zhuān)有名詞解釋_第3頁(yè)
流體力學(xué)復(fù)習(xí)資料及英文專(zhuān)有名詞解釋_第4頁(yè)
流體力學(xué)復(fù)習(xí)資料及英文專(zhuān)有名詞解釋_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Chapter1Fluidstatics流體靜力學(xué)連續(xù)介質(zhì)假定(Continuumassumption):Therealfluidisconsideredasno-gapcontinuousmedia,calledthebasicassumptionofcontinuityoffluid,orthecontinuumhypothesisoffluid.流體是由連續(xù)分布的流體質(zhì)點(diǎn)(fluidparticle)所組成,彼此間無(wú)間隙。它是流體力學(xué)中最基本的假定,1755年由歐拉提出。在連續(xù)性假設(shè)之下,表征流體狀態(tài)的宏觀物理量在空間和時(shí)間上都是連續(xù)分布的,都可以作為空間和時(shí)間的函數(shù)。流體質(zhì)點(diǎn)(Flui

2、dparticle):AfluidelementthatissmallenoughwithenoughmolestomakesurethatthemacroscopicmeandensityhasdefinitevalueisdefinedasaFluidParticle.宏觀上足夠小,微觀上足夠大。流體的粘性(Viscosity):isaninternalpropertyofafluidthatoffersresistancetosheardeformation.Itdescribesafluidsinternalresistancetoflowandmaybethoughtasameasu

3、reoffluidfriction.流體在運(yùn)動(dòng)狀態(tài)下抵抗剪切變形的性質(zhì),稱(chēng)為黏性或粘滯性。它表示流體的內(nèi)部流動(dòng)阻力,也可當(dāng)做一個(gè)流體摩擦力量oTheviscosityofagasincreaseswithtemperature,theviscosityofaliquiddecreaseswithtemperature.牛頓內(nèi)摩擦定律(NewtonslawofviscOsityT=UdzThedynamicviscosity(動(dòng)力黏度)isalsocalledabsoluteviscosity絕對(duì)黏度).Thekinematicviscosity(運(yùn)動(dòng)黏度)istheratioofdynamic

4、viscositytodensity.Uv=P6.Compressibility(壓縮性):Asthetemperatureisconstant,themagnitudeofcompressibilityisexpressedbycoefficientofvolumecompressibility(體積壓縮系數(shù))K,arelativevariationrate(相對(duì)變化率)ofvolumeperunitpressure.Thebulkmodulusofelasticity(體積彈性模量)EisthereciprocalofcoefficientofvolumeKcompressibility7

5、.流體的膨脹性(expansibility;dilatability):Thecoefficientofcubicalexpansion(體積熱膨脹系數(shù))atistherelativevariationrateofvolumeperunittemperaturechange.dVVdVa=:=(1/K,1/C)tdTVdT8表面張力Surfacetension:Apropertyresultingfromtheattractiveforcesbetweenmolecules.c單位長(zhǎng)度所受拉力表面力Surfaceforceistheforceexertedonthecontactsurface

6、bythecontactedfluidorotherbody.Itsvalueisproportionaltocontactarea.作用在所研究流體外表面上與表面積大小成正比的力。Stress(應(yīng)力)isthesurfaceforceonperunitarea.質(zhì)量力MassforceTheforceactingoneveryfluidmassparticlewithinthecontrolbody.Itsvalueisproportionaltoitsmass.Massforceisalsoknownasbodyforce.作用在流體的f=1dpxpQxf=1dpypdyf二1dpzpdz

7、1775年每一個(gè)流體質(zhì)點(diǎn)上,其大小與流體所具有的質(zhì)量成正比。EulerEquilibriumEquations歐拉平衡微分方程(分量式)PhysicalMeaning:Forthefluidinequilibrium,surfaceforcecomponentspermassfluidareequaltomassforcecomponentspermassfluid.Pressurevariationrateinaxesdirections(也,雀,氓)aredxdydzequaltomassforcecomponentsperunitvolumeinaxesdirectionsrespect

8、ively(pf,pf,pf)xyzconstant-pressureSurface(等壓面)asurfacethatthepressureofeverypointinliquidisequal.Commonconstant-pressuresurfacesarefreeliquidsurfaceandinterfaceoftwounmixedfluidsinequilibrium平衡流體中壓強(qiáng)相等的點(diǎn)所組成的平面或曲面。p=C或dp=0PressureDistributionintheStaticFluid重力場(chǎng)中流體的平衡p=-pgz+CConclusions:Pressureatapoi

9、ntinastaticfluidundergravityincreaseslinearlywithdepth.Pressureatapointinastaticfluidundergravityisequaltothesumofthepressureatthefreesurfaceandthefluidspecificweighttimingdepth.constant-pressuresurfaceinastaticfluidundergravityisahorizontalplane.Extended:whilethepressureatapointandthedepthdifferenc

10、ebetweentwopointsareknown,thepressureatanotherpointcanbecalculated.Absolutepressure(絕對(duì)壓力),Gagepressure(相對(duì)壓力,又稱(chēng)“表壓力”),andVacuum(真空度):表壓力=絕對(duì)壓力一大氣壓力;真空度=大氣壓力一絕對(duì)壓力15FluidinRelativeEquilibrium(相對(duì)靜止流體)Equationofconstant-pressuresurface(等壓面方程):a)UniformLinearAcceleration等加速度直線(xiàn)運(yùn)動(dòng)流體:acosady+(asina一g)dz=0b)Un

11、iformRotationaboutaVerticalAxis等角速度旋轉(zhuǎn)流體:Chapter2basicequationsoffluidmechanics16.17.跡線(xiàn)pathline:thetraceafterasingleparticletravelsinafieldofflowoveraperiodoftime.流體質(zhì)點(diǎn)的運(yùn)動(dòng)軌跡曲線(xiàn)dx_dy_dz_u(x,y,z,t)v(x,y,z,t)w(x,y,z,t)流線(xiàn)streamline:acurvethatshowthedirectionofanumberofparticlesatthesameinstantoftime.某一時(shí)刻處處

12、與速度矢量相切的空間曲線(xiàn)-瞬時(shí)性。dxdydzu(x,y,z,t)v(x,y,z,t)w(x,y,z,t)Stream-tube(流管)Consideraclosedcurve(notstreamline)intheflowfield,thendrawstreamlinesthrougheverypointonit,soastoformatube-shapingspacewhosewallsarestreamlines.Thistubeiscalledthestream-tube.在流場(chǎng)中任取一個(gè)有流體從中通過(guò)的封閉曲線(xiàn),在曲線(xiàn)上的每一個(gè)質(zhì)點(diǎn)都可以引出一條流線(xiàn),這些流線(xiàn)簇圍成的管狀曲面稱(chēng)為流管

13、。Tube-flow流束Fluidfullingthestreamtubeiscalledthetube-flowandthelimitofatube-flowisastreamline.流管內(nèi)的全部流體稱(chēng)為流束。Ministream-tube微小流束Thestreamtubewithaninfinitesimalsectionissaidtobemini-streamtube.Streamlineistheextremecaseofmini-streamtube.截面無(wú)窮小的流束。Totalflow總流Totalofcountlessmini-streamtubesiscalledtotal

14、flow.包含流動(dòng)中所有的微小流束。Crosssection(過(guò)水?dāng)嗝?-Thesectionisperpendiculartothedirectionoffluidflow.(suchaspipeflowandchannelflow)與流束或總流流線(xiàn)dA,A成正交的斷面。Discharge(流量)-Amountoffluidpassthroughacrosssectionperunittime(suchasthesectioninthechannelorpipe).單位時(shí)間內(nèi)通過(guò)某一過(guò)水?dāng)嗝娴牧黧w體積稱(chēng)為體積流量,簡(jiǎn)稱(chēng)流量。Meanvelocity斷面平均流速-Thevelocitiesof

15、pointsonthesamecrosssectioninthetotalflowaredifferent,sousuallyanaveragevelocityisusedinsteadoftherealvelocityoverthecrosssection,thisaveragevelocityiscalledthemeanvelocity.Uniformflow均勻流:isdefinedasuniformflowwhenintheflowfieldthevelocityandotherhydrodynamicparametersdonotchangefrompointtopointatan

16、yinstantoftime(inwhichthecrosssectionofeachstreamtuberemainsunchanged.流場(chǎng)中每一空間點(diǎn)的各運(yùn)動(dòng)參數(shù)(速度,壓力)不隨空間位置而變化。(VV)O=0Nonuniformflow非均勻流:Flowsuchthatthevelocityvariesfromplacetoplaceatanyinstant.Steadyflow恒定流:theflowwhosemotionfactorsdontchangewithtime.流場(chǎng)中所有的運(yùn)動(dòng)要素不隨時(shí)間變化.28Unsteadyflow非恒定流:theflowthatatleastone

17、ofitsmotionfactorschangeswithtime.流場(chǎng)中至少有一個(gè)運(yùn)動(dòng)要素隨時(shí)間變化.Onedimensionalflow(一元流動(dòng))-allmainvariablesintheflowfieldcanbecompletelyspecifiedbyasinglecoordinateifthevariationofflowparameterstransversetothemainstreamdirectioncanbeneglected.流動(dòng)參數(shù)只與一個(gè)坐標(biāo)變量有關(guān)。Twodimensionalflow(二元流動(dòng))-fluidmotionfactorsarefunctionof

18、twospacecoordinates.流動(dòng)參數(shù)與兩個(gè)坐標(biāo)變量有關(guān)。Three-dimensionalFlow(三元流動(dòng)):Fluidflowsmotionfactorsarefunctionsofthreespacecoordinates.流動(dòng)參數(shù)與三個(gè)坐標(biāo)變量有關(guān)。System(系統(tǒng))isasetofdefinitefluidparticlesselectedintheinterestofresearcher.由確定的流體質(zhì)點(diǎn)組成的流體團(tuán)或流體體積丿。系統(tǒng)邊界面s億丿在流體的運(yùn)動(dòng)過(guò)程中不斷發(fā)生變化。反映了拉格朗日觀點(diǎn)Controlvolume(控制體CV)isdefinedasaninva

19、riablyhollowvolumeorframefixedinspaceormovingwithconstantvelocitythroughwhichthefluidflows.相對(duì)于坐標(biāo)系固定不變的空間體積V。是為了研究問(wèn)題方便而取定的。反映了歐拉觀點(diǎn)ForaCV:1)itsshape,volumeanditscscannotchangewithtime.2)itisstationaryinthecoordinatesystem.(inthisbook)3)theremaybetheexchangeofmassandenergyonthecs.35.differentialfoContr

20、olsurface控制面:thesurfaceareacompletelyenclosestheCV邊界面S稱(chēng)為控制面。mofxontinuityequation微分形式的連續(xù)性方程dpdpvvQpv1xHyHh0dtdxdydzForincompressiblefluiddvdvQv+zQzFor2-DincompressibleflowPhysicalmeaning:Thenetmassdischargeenteringthecontrolvolumeisequaltothemassincreasedinunittimeduetothechangeindensity.Fitfor:Stea

21、dyflow,unsteadyflow,compressibleandincompressiblefluid,idealfluidandrealfluid.Integralformofcontinuityequation積分形式的連續(xù)方程J空dV+JpvdS=0VQtSnPhysicalmeaning:在單位時(shí)間內(nèi),由于控制體內(nèi)密度變化引起的質(zhì)量變化量(增加量或減少量)與通過(guò)控制體表面的質(zhì)量?jī)袅鞒隽浚鞒雠c流入的質(zhì)量差)之和等于零。Steadyflow定常流動(dòng)T_pvdS-0csnincompressiblefluid不可壓縮流體JvdS=0CSnvS=vS1122MotionDifferen

22、tialEquation運(yùn)動(dòng)微分方程ForIDEALFLOWTOC o 1-5 h zq1QpQvQvQvQvf=x+vx+vx+vxxpQxQtxQxyQyzQzp1QpQvQvQvQvf=y+vy+vy+vyypQyQtxQxyQyzQz1QpQvQvQvQvzpQzQtxQxyQyzQzforViscousFlowfxfy1QpQ2vQ2vQ2vQvQvQvQv+v(x+x+x)=x+vx+vx+vxpQxQx2Qy2Qz2QtxQxyQyzQz1Qp/Q2vQ2vQ2vQvQvQvQv+V(y+y+尸)=y+vy+vy+vypQyQx2Qy2口Qz2QtxQxyQyzQz1型+v(工p

23、QzQx2Q2vQ2v+z+z)Qy2Qz2QvQvQvQvz+vz+vz+vzQtxQxyQyzQzBernoulliEquation伯努利方程(1)steadyflow定常流動(dòng)(2)incompressibleflow不可壓縮(3)integrationalongastreamline沿流線(xiàn)積分(4)massforceisapotentialforce質(zhì)量力有勢(shì)pv2Forstreamlinez+=CPg2gForcompressibleflowingravityfieldV22gV222gForcompressibleflowwithfluidmachineryingravityfiel

24、dV22gV22gz(m)theelevationheightabovedatumsurfaceo-o,calledtheelevationhead(位置水頭).p/(Pg)risingheightoffluidwithunitweightundertheactionofpressureP,calledthepressurehead(壓力水頭).u2/(2g)risingheightoffluidwithunitweightundertheaction,ocfallveedltohceityVvelocityhead(速度水頭),denotedashuhfthelostmechanicalen

25、ergyfrom1to2pointsperunitweightfluidHTTheeffectiveenergyobtainedaftertheunitweightoftheliquidflowsthroughthepump.單位重量液體流經(jīng)泵后獲得的有效能量。Headofdelivery揚(yáng)程p-pv2-v2H=厶i+2i+zz2g21Thesumofthemiscalledthetotalhead(總水頭),denotedasH.Pumppower泵功率:Pw=HtQyFortheideal-fluidtotalflow理想流體總流的伯努利方程v2pv2z+a+a十1Pg】2gforther

26、eal-fluidtotalflow實(shí)際流體總流的伯努利方程momentumintegralequation動(dòng)量積分方程ForCVjjja(pv)dv+ffpv(v-n)dS=B1pfdV+WpdSdtnSnnTOC o 1-5 h zVVSflow:sumofthefluidmomentumchangeinCVandthenetoutflowmomentuminCS,isequaltotheresultantforce.v(v-n)dS二fffpfdV+ffpdSSnSMoment-of-momentumintegralequation動(dòng)量矩積分方程fffg)dV+乙(rxv)p(v-n)d

27、S=fff(rxpf)dV+ff(rxp)dSQtsSnForsteadyflow:(rxv)p(v-n)dS=Svxf)dV+JJ(rxp)dSSn流出動(dòng)量矩CS-流入動(dòng)量矩CS=合外力矩CV+cs41.Forcesonbend(彎頭)F=pQ(vcos0-v)+(p-p)A-(p-p)Acos0 x211a12a2F=-pQvsin0-(p-p)Asin0y22a242fluidjetsondeflector(導(dǎo)流板)R=-pQ(vcos0-v)+(p-p)A-(p-p)Acos0 x211a12a2R=-pQvsin0-(p-p)Asin0y22a243Sprinkler(噴水器)角速度

28、:v(r+r)4Q(r+r)3=12=12r2+r2兀d2(r2+r2)固定所需力矩1212M=pQ(vr+vr)=4pQV+12兀d2Chapter3PipeFlowandBoundaryLayerTheory(管流和邊界層概述)Laminarflow(層流):Inthefluidflowthefluidparticlesmovealongsmoothpathinlayerswithouttransversevelocityinthedirectionofmainflow,onelayerglidessmoothlyoveranadjacentlayer.Turbulentflow(紊流,湍

29、流)orTurbulence:Ifthefluidparticleshaveatransversevelocitynormaltothemainflowdirection,thatleadstoparticlesmixingupeachother,withaviolenttransverseinterchangeofmomentum.Thisisturbulentflow(紊流,湍流)orturbulence.Reynoldsnumber雷諾數(shù):isusedtodescribethecharacteristicofflow.Re=肥=巴卩vWettedperimeter(濕潤(rùn)長(zhǎng)度):Thele

30、ngthofwallcontactedwithliquid.thehydraulicdiameter(水力直徑)DH:Thecharacteristicdimensionofnoncirculartube.49HeadLoses(能頭損失,或水頭損失):thetotalenergylossesperunitweight(單位重量流體所損失的機(jī)械能為能頭損失(水頭),whichduetotheresistancebetweentwosectionsofgraduallyvariedflow.(流體流動(dòng),克服粘性?xún)?nèi)摩擦力,消耗機(jī)械能為熱能.)50FrictionLoss沿程水頭損失(力):Inth

31、eflowthroughastraighttubewithconstantcrossAsection,theenergylossincreaseslinearlyinthedirectionofflowandthelossiscalledfrictionloss.(原因:粘性?xún)?nèi)摩擦力,以及與管壁的摩擦阻力)Darcy-Weisbch(達(dá)西-韋斯巴赫)Equation:八D2g入:thecoefficientoffrictionloss沿程阻力系數(shù),與流態(tài)和壁面有關(guān)51Locallosses局部水頭損失(h):Whentheshapeofflowpathchanges,suchassection

32、enlargementandsoon,itwillgiverisetoachangeinthedistributionofvelocityfortheflow.Thechangeresultsinenergyloss,whichiscalledminorlossorlocalloss.原因:流速急劇變化,流體質(zhì)點(diǎn)劇烈撞擊和摩擦.Z:minorlosscoefficientorlocallosscoefficient為局部阻力系數(shù),與障礙物形式有關(guān)Headlosses總能量損失(h尸h+h)fAfh=Sh+工hf九gLAMINARFLOWTHROUGHCIRCULARTUBE圓管中的層流Velo

33、citydistributionincrosssectionu(r)=P(R2-r2)=wD4卩L4卩Dischargeumaxdq=udA=u(r)2兀rdrq=Jdq=JRu(r)2兀rdrvv0q=vAv=vR2=J:蓋(R2-忻忤Ap兀R2u2maxApR2_1v=u8卩L2maxq=JudA=r2)dAvAA4HL=J(R2-r2)2兀rdr=兀RAp=o4卩L8卩L兀D4,Ap128卩LHagen-Poiseuille(哈根-泊肅葉)equation.Distributionofshearstress切應(yīng)力分布:T=-hdu=Aprdr2L壁面剪切力t=ApR=沁w2LReF=t2

34、兀RL=ApR2兀RL=兀R2Ap=8卩Lv兀R2=8兀卩Lvw2LR254.Headlossalongthepath沿程能量(阻力)損失pressuredrop壓強(qiáng)損失A8hLq128hLq32HLv8卩LvAp=v=v:兀R4兀d4d2R2=hpgHeadloss水頭損失:h=p=8vLqv=128vLqv=32vLv=8vLv九pg兀gR*兀gd4=gd2gRTthecoefficientoffrictionloss:64v=64vdRePowerloss(功率損失):W=pghq=Apq=ApAv=v九vv兀R4兀d455.PulsationPhenomenon(脈動(dòng)現(xiàn)象):Theph

35、enomenonthatthephysicalparameterfluctuatesaroundacertainaveragevalueiscalledpulsationphenomenon(脈動(dòng)現(xiàn)象).u=o+uwhere:aistime-averagevelocity(時(shí)均速度);u-thecomponentofrandomfluctuatingvelocity(脈動(dòng)速度).hydraulicsmooth冰力光滑):Ifviscoussublayer8morethanabsoluteroughnesse(ie.8s),theeffectofeforthecoreofturbulentflo

36、wisverylittle,namely,theinfluenceofeintheenergylossisverylittle.hydraulicrough(水力粗糙):Ifviscoussublayer8lessthanabsoluteroughnesse(ie.8e),thefluidparticleswithcertainvelocityimpactorcrashtheroughnessprojectionsofpipewall,sothevelocityoftheseparticleschangesradically.Itcauseseddy(渦流)orvortex(漩渦)locall

37、y.Meantimetheinfluenceistransferredtothecoreofturbulentflow.Soeplaysanimportantroleintheenergyloss.Parallellines并聯(lián)管路Byafewsimplelinesortandemlinewhichinletsideandoutletpipingconnectedrespectively.h=h=h=ff1f2dischargeQ=Q+Q+LL12Pipelineinseries/tandemlines(串聯(lián)管路):Byacoupleofdifferentdiameterordifferent

38、roughnesspipeline.v22g+TotaldischargeQ=vA=vA=LL1122BoundaryLayer邊界層:Thefluidparticlesonasolidboundarymustadhereto(粘著,附著)thesolidwallinspiteof(不論)theReynoldsnumberReintheflow.Thevelocityoffluidneartheboundaryvariesrapidlyinasteep(陡的)velocitygradient(速度梯度)outwardnormaltothewallwherethefluidhasazerovel

39、ocity.Thevelocitygradientsetsup(產(chǎn)生)shearforceneartheboundaryandforthisreasontheeffectofviscositycannotbeneglectedintheregion.ThisregioncalledBoundarylayer.ThelargertheReynoldsnumberis,thethinnertheboundarylayeris.Chapter4OrificeOutflowandgapflow(孔口出流與縫隙流動(dòng))Thin-walledorifice(薄壁孑L口):1/d-2,theedgethick

40、nessslightlyeffectsthejetflow,andonlyminorlosswasconsidered,thecontractedsectionlocatedatd/2afterthehole.Thick-walledorifice(厚壁孑L口):210,thehead,pressure,velocityonthesectionwillNOTbechangedwiththeheight.65.freeoutflow(自由出流):thejetflowsintoatmospheredirectly,thepressureonthecontractedsectionwasBAR,p=

41、p.ca66submergedoutflow(淹沒(méi)出流):thejetflowsdowntothewater.67.Contractedsection收縮斷面:thestreamlineswerecontractedafterthehole,andthesectionreachedtheminimumatd/2,whichwasthecontractedsectionCC.68.contractioncoefficient收縮系數(shù):theratiobetweenthecontractedsectionareaandtheholearea,labeledasCc:C=A/A1cc69.Thedi

42、schargecalculationofsteadyfreeflowinorifice孔口恒定自由出流流量計(jì)算Cvisthevelocitycoefficient流速系數(shù)Q=Av=ACC話(huà)=AC/2gHcccvrC=CCdischargecoefficient流量系數(shù)rcv70.gapflowbetweenstationary固定平板間的縫隙流動(dòng)velocitydistributionu=丄dPZ2+Cz+C2卩dxi2umaxz=h/28yLdischargeq=Bfhudz=也Jh(hz-z2)dz=少坐vo2pLo12pLaveragevelocityv=2=二=型AhB12yL12卩L

43、qpressurelossAp=vBh3dischargeBh3ApUBhqv=12yL土T71.gapflowbetweenrelativelymovedparallelplates具有相對(duì)運(yùn)動(dòng)的兩平行平板間的流動(dòng)velocityu=”Z2)土hz壓差與平板運(yùn)動(dòng)方向相同取正號(hào);方向相反取負(fù)號(hào)gapflowbetweenconcentriccylinders同心圓環(huán)間的縫隙流動(dòng)discharge兀dh3Ap12yL兀dUh2Chap.5SimilitudeandDimensionalAnalysis相似理論和量綱分析Thethreesimilaritiesareessentialconditi

44、onsofDynamicSimilitudeofFluidMotion(流動(dòng)相似),inwhich,atanytime,alltheparametersofthemodelandprototypeareinthesameratiothroughouttheentireflowfield.DynamicSimilitudeofFluidMotion(流動(dòng)相似)includesGeometricsimilarity幾何相似,Kinematicsimilarity運(yùn)動(dòng)相似,andDynamicsimilarity動(dòng)力相似;Geometricsimilarity幾何相似isthebasicandthe

45、mostobviousrequirement;Kinematicsimilarity運(yùn)動(dòng)相似istheresult;Dynamicsimilarity動(dòng)力相似istheconditions.dynamicsimilarityincludeskinematicsimilarity,whilekinematicsimilarityincludesgeometricsimilarity.Hence,ratiosofforce,timeandlengtharesameunderdynamicsimilarity,andotherquantitiesarealsoequal.動(dòng)力相似包括運(yùn)動(dòng)相似,而運(yùn)動(dòng)相似又包括幾何相似。所以動(dòng)力相似包括力、時(shí)間和長(zhǎng)度三個(gè)基本物理量相似。兩系統(tǒng)的其它物理量由它們決定,也必然相似。Theinitialconditions(初始條件)andboundaryconditions(邊界條件)alsomustbecoincidentfordynamicsimilitudeoffluidflowexceptabovethreesimilarities.Newtonnumber(牛頓數(shù)),-二Nep12V2Reynoldsnumber

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論