陜西省長安一中、高新一中、交大附中2023學(xué)年高三一診考試數(shù)學(xué)試卷(含解析)_第1頁
陜西省長安一中、高新一中、交大附中2023學(xué)年高三一診考試數(shù)學(xué)試卷(含解析)_第2頁
陜西省長安一中、高新一中、交大附中2023學(xué)年高三一診考試數(shù)學(xué)試卷(含解析)_第3頁
陜西省長安一中、高新一中、交大附中2023學(xué)年高三一診考試數(shù)學(xué)試卷(含解析)_第4頁
陜西省長安一中、高新一中、交大附中2023學(xué)年高三一診考試數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設(shè)等差數(shù)列的前項和為,若,則( )A10B9C8D72已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a

2、的取值范圍是()ABCD3設(shè)集合Ay|y2x1,xR,Bx|2x3,xZ,則AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,34設(shè)函數(shù),當(dāng)時,則( )ABC1D5若變量,滿足,則的最大值為( )A3B2CD106如圖,在四邊形中,則的長度為( )ABCD7一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是 ( ) ABCD8下圖是民航部門統(tǒng)計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數(shù)據(jù)統(tǒng)計圖,以下敘述不正確的是( )A深圳的變化幅度最小,北京的平均價格最高B天津的往

3、返機票平均價格變化最大C上海和廣州的往返機票平均價格基本相當(dāng)D相比于上一年同期,其中四個城市的往返機票平均價格在增加9要得到函數(shù)的圖像,只需把函數(shù)的圖像( )A向左平移個單位B向左平移個單位C向右平移個單位D向右平移個單位10已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是( )ABCD11在四面體中,為正三角形,邊長為6,則四面體的體積為( )ABC24D12框圖與程序是解決數(shù)學(xué)問題的重要手段,實際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的方差,設(shè)計了如圖所示的程序框圖,其中輸入,則圖中空白框中應(yīng)填入( )A,BC,D,二、

4、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù),在區(qū)間上隨機取一個數(shù),則使得0的概率為 14已知向量滿足,且,則 _15如圖,已知扇形的半徑為1,面積為,則_.16如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,則的值是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)為了加強環(huán)保知識的宣傳,某學(xué)校組織了垃圾分類知識竟賽活動.活動設(shè)置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入

5、對應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學(xué)期望.18(12分)設(shè)(1)證明:當(dāng)時,;(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)19(12分)如圖,在四棱錐中,底面是邊長為2的菱形,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,若,求PH與平面PBC所成角的正弦值.

6、20(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.21(12分)在中,內(nèi)角的邊長分別為,且(1)若,求的值;(2)若,且的面積,求和的值22(10分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】根據(jù)題意,解得,得到答案.【題目詳解】,解得,故.故選

7、:.【答案點睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計算能力.2、A【答案解析】根據(jù)x的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個不同的交點,利用數(shù)形結(jié)合進行求解即可【題目詳解】當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當(dāng)a=1時,與有無數(shù)多個交點,當(dāng)直線經(jīng)過點時,即,時,與有兩個交點,當(dāng)直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A【答案點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等

8、式,再通過解不等式確定參數(shù)的范圍; (2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.3、C【答案解析】先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可【題目詳解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,AB0,1,2,3,故選:C【答案點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題4、A【答案解析】由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值【題目詳解】,時,由題意,故選:A【答案點睛

9、】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵5、D【答案解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可【題目詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標分別為,目標函數(shù)的幾何意義為,可行域內(nèi)點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【答案點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題6、D【答案解析】設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【題目詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D

10、【答案點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.7、D【答案解析】由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D8、D【答案解析】根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對選項逐一分析,由此得出敘述不正確的選項.【題目詳解】對于A選項,根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據(jù)折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據(jù)條形圖可知上海和廣州的往返機票平均價格基本相當(dāng),所以C選項敘述正確.對于D選項,根據(jù)折線圖可知相比于上一年同期

11、,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【答案點睛】本小題主要考查根據(jù)條形圖和折線圖進行數(shù)據(jù)分析,屬于基礎(chǔ)題.9、A【答案解析】運用輔助角公式將兩個函數(shù)公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【題目詳解】解:.對于A:可得.故選:A.【答案點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).10、A【答案解析】由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【題目詳解】根據(jù)題意,所以點的坐標為,又 ,所以.故選:A.【答案點

12、睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.11、A【答案解析】推導(dǎo)出,分別取的中點,連結(jié),則,推導(dǎo)出,從而,進而四面體的體積為,由此能求出結(jié)果.【題目詳解】解: 在四面體中,為等邊三角形,邊長為6,分別取的中點,連結(jié),則,且,平面,平面,四面體的體積為:.故答案為:.【答案點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.12、A【答案解析】依題意問題是,然后按直到型驗證即可.【題目詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,故選:A.【答案點睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與

13、化歸思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得0的概率為考點:本小題主要考查與長度有關(guān)的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.14、【答案解析】由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結(jié)論【題目詳解】由題意,即,故答案為:【答案點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關(guān)鍵15、【答案解析】根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公

14、式求出.【題目詳解】設(shè)角, 則,所以在等腰三角形中,則.故答案為:.【答案點睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.16、【答案解析】根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【題目詳解】由題得,得.故答案為:【答案點睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)所抽取的人中得分落在組和內(nèi)的人數(shù)分別為人、人;(2)分布列見解析,.【答案解析】(1)將分別乘以區(qū)間、對應(yīng)的矩形面積可得出結(jié)果;(2)由題可知,隨機變量的可能取值為、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布

15、列,并由此計算出隨機變量的數(shù)學(xué)期望值.【題目詳解】(1)由題意知,所抽取的人中得分落在組的人數(shù)有(人),得分落在組的人數(shù)有(人).因此,所抽取的人中得分落在組的人數(shù)有人,得分落在組的人數(shù)有人;(2)由題意可知,隨機變量的所有可能取值為、,所以,隨機變量的分布列為:所以,隨機變量的期望為.【答案點睛】本題考查利用頻率分布直方圖計算頻數(shù),同時也考查了離散型隨機變量分布列與數(shù)學(xué)期望的求解,考查計算能力,屬于基礎(chǔ)題.18、(1)證明見解析;(2).【答案解析】(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導(dǎo),變形后

16、討論當(dāng)時的函數(shù)單調(diào)情況:當(dāng)時,可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數(shù)的最大值;當(dāng)時不滿足題意,因為求整數(shù)的最大值,所以時無需再討論.【題目詳解】(1)證明:當(dāng)時代入可得,令,則,令解得,當(dāng)時,所以在單調(diào)遞增,當(dāng)時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當(dāng)時,則在時單調(diào)遞減,所以,即當(dāng)時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令 則令解得,當(dāng)時,即在內(nèi)單調(diào)遞減,當(dāng)時,即在內(nèi)單調(diào)遞增,所以當(dāng)時取得最小值,則,所以此時滿足的整數(shù) 的最大值為;當(dāng)時,在時,此時,與題意矛盾,所以不成立.

17、因為求整數(shù)的最大值,所以時無需再討論,綜上所述,當(dāng)時,整數(shù)的最大值為.【答案點睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強,屬于難題.19、(1)見解析;(2)【答案解析】(1)記,連結(jié),推導(dǎo)出,平面,由此能證明平面平面;(2)推導(dǎo)出,平面,連結(jié),由題意得為的重心,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值【題目詳解】(1)證明:記,連結(jié),中,平面,平面,平面平面(2)中,平面,連結(jié),由題意得為的重心,平面平面平面,在平面的射影落在上,是與平面所成角,中,與平面所成角的正弦值為【答案點睛】

18、本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題20、(1),;(2).【答案解析】(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【題目詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,因此,的面積為最大值為.【答案點睛】本題考查曲線的參數(shù)方程、極坐標方程與普通方程之間的相互轉(zhuǎn)換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.21、(1);(2).【答案解析】(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論