版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第 小升初數(shù)學必考知識點小升初數(shù)學必考知識點1 何謂“數(shù)、行、形、算”,也就是數(shù)論,行程,圖形、計算四個問題。數(shù)論難在它的抽象,這是區(qū)分尖子生和普通生的關鍵;行程問題復雜就在其應用,孩子在做這類題目的時候,要求的不僅是其思維,還有其表述;圖形問題(幾何問題)雜而難,重點要求的是面積的計算,這是中學教育的開始;計算是基礎,是孩子取得高分的必要保障。 由于這四個問題,學生容易入門,但不易熟練,時常犯錯誤,因此成為近年來重點中學考試的熱點,據(jù)了解,蘇州重點中學近年來的這幾大問題的考題占據(jù)全部了80%左右,對這些問題的考察也十分偏重,而數(shù)論和行程問題的考察更是重中之重,往往占到一張試卷的50%。那么如
2、何復習這四方面的內容呢?對于圖形問題,我們要說的就是培養(yǎng)孩子的形象思維,重點加強的是面積的計算。計算的技巧和方法也是在做題的總結和加強的,這里重點介紹一下數(shù)論和行程問題的復習方法。數(shù)論在數(shù)論學習中學生往往容易犯如下幾個錯誤:1、讀題障礙。數(shù)論的題目敘述往往只有幾句話,甚至只有一行,可就這短短的幾句話,卻表達了很多意思,學生如果讀不出題中的意思,題目通常會解錯。2、知識僵化。由于數(shù)論問題非常抽象,大多數(shù)學生往往采用死記硬背的方法來“消化”所學的內容,導致各個知識點都似曾相識,但遇到實際題目卻一籌莫展。例如,說起奇偶性都知道怎么回事,馬上就開始背:“奇數(shù)+奇數(shù)=偶數(shù)”可是在做題的時候就想不到用。3
3、、只見樹木,不見森林。對于數(shù)論定理的靈活運用很欠缺。提起定理都能一字不差的背下來,但是對各個概念和性質缺乏整體上的認識和把握,更不用說理解各知識點之間的內部聯(lián)系了。知識體系:整除問題:(1)數(shù)的整除的特征和性質 (分班??純热?(2)位值原理的應用(用字母和數(shù)字混合表示多位數(shù))質數(shù)合數(shù):(1)質數(shù)、合數(shù)的概念和判斷(2)分解質因數(shù)(重點)約數(shù)倍數(shù):(1)最大公約最小公倍數(shù)(2)約數(shù)個數(shù)決定法則 (常考內容)余數(shù)問題:(1)帶余除式的理解和運用;(2)同余的性質和運用;(3)中國剩余定理奇偶問題:(1)奇偶與四則運算;(2)奇偶性質在實際解題過程中的應用完全平方數(shù):(1)完全平方數(shù)的判斷和性質(
4、2)完全平方數(shù)的運用整數(shù)及分數(shù)的分解與分拆(重點、難點)這四個問題我們需要掌握到什么樣的程度?近幾年來,雖然一些重點中學對以上的幾個問題考察較多,但是難度通常不大,中等難度題目出現(xiàn)的頻率很高,通常在60%以上,因此我們的同學只要夯實基礎,對于這樣的一張分班試卷的完成應該是能取得很好的成績的。對此,編輯給出建議:如果我們的孩子不是要搞競賽,只是為了進入重點中學,中等題的掌握絕對是我們的重點,不能盲目追求難度,否則容易適得其反。小升初數(shù)學必考知識點2 數(shù)的整除 1整除:整數(shù)a除以整數(shù)b(b0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。2約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整
5、除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。3一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)約數(shù)的個數(shù)是有限的,最小的約數(shù)是1,最大的約數(shù)是它本身。4按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。5按一個數(shù)約數(shù)的個數(shù),非0自然數(shù)可分為1、質數(shù)、合數(shù)三類。質數(shù):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)。質數(shù)都有2個約數(shù)。合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個約數(shù)。最小的質數(shù)是2,最小的合數(shù)是4120以內的質數(shù)有:2、3、5、7、11、13、17、19120以內的合數(shù)有“4、6
6、、8、9、10、12、14、15、16、186能被2整除的數(shù)的特征:個位上是0、2、4、6、8的數(shù),都能被2整除。能被5整除的數(shù)的特征:個位上是0或者5的數(shù),都能被5整除。能被3整除的數(shù)的特征:一個數(shù)的各位上 數(shù)的和能被3整除,這個數(shù)就能被3整除。7質因數(shù):如果一個自然數(shù)的因數(shù)是質數(shù),這個因數(shù)就叫做這個自然數(shù)的質因數(shù)。8分解質因數(shù):把一個合數(shù)用質因數(shù)相乘的形式表示出來,叫做分解質因數(shù)。9公約數(shù)、公倍數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。10一般關系的兩個數(shù)的最大公約
7、數(shù)、最小公倍數(shù)用短除法來求;互質關系的兩個數(shù)最大公約數(shù)是1,最小公倍數(shù)是兩數(shù)之積;倍數(shù)關系的兩個數(shù)的最大公約數(shù)是小數(shù),最小公倍數(shù)是大數(shù)。11互質數(shù):公約數(shù)只有1的兩個數(shù)叫做互質數(shù)。12兩數(shù)之積等于最小公倍數(shù)和最大公約數(shù)的積。小升初數(shù)學必考知識點3 一整數(shù)和小數(shù) 1最小的一位數(shù)是1,最小的自然數(shù)是02小數(shù)的意義:把整數(shù)“1”平均分成10份、100份、1000份這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾可以用小數(shù)來表示。3小數(shù)點左邊依次是整數(shù)部分,小數(shù)點右邊是小數(shù)部分,依次是十分位、百分位、千分位4小數(shù)的分類:小數(shù) 有限小數(shù)無限循環(huán)小數(shù)無限小數(shù)無限不循環(huán)小數(shù)5整數(shù)和小數(shù)都是按照十進制計數(shù)法
8、寫出的數(shù)。6小數(shù)的性質:小數(shù)的末尾添上0或者去掉0,小數(shù)的大小不變。7小數(shù)點向右移動一位、二位、三位原來的數(shù)分別擴大10倍、100倍、1000倍小數(shù)點向左移動一位、二位、三位原來的數(shù)分別縮小10倍、100倍、1000倍二數(shù)的整除1整除:整數(shù)a除以整數(shù)b(b0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。2約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。3一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)約數(shù)的個數(shù)是有限的,最小的約數(shù)是1,最大的約數(shù)是它本身。4按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做
9、偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。5按一個數(shù)約數(shù)的個數(shù),非0自然數(shù)可分為1、質數(shù)、合數(shù)三類。質數(shù):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)。質數(shù)都有2個約數(shù)。合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個約數(shù)。最小的質數(shù)是2,最小的合數(shù)是4120以內的質數(shù)有:2、3、5、7、11、13、17、19120以內的合數(shù)有“4、6、8、9、10、12、14、15、16、186能被2整除的數(shù)的特征:個位上是0、2、4、6、8的數(shù),都能被2整除。能被5整除的數(shù)的特征:個位上是0或者5的數(shù),都能被5整除。小升初數(shù)學必考知識點4 1長度單位有:千米、米、分米、厘米、毫
10、米,寫出它們之間的進率 面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進率。體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進率。質量單位有:噸、千克、克,寫出它們之間的進率。時間單位有:世紀、年、月、日、時、分、秒,寫出它們之間的進率。2一年中的大月有:1、3、5、7、8、10、12月,共7個,每月31天。小月有:4、6、9、11月,共4個,每月30天。 二月平年是28天,閏年是29天。3一年有4個季度,每個季度3個月。4平年閏年:公歷年份是4的倍數(shù)的一般是閏年,公歷年份是整百數(shù)的,必須是400的倍數(shù)才是閏年。5.名數(shù):把計量得到的數(shù)和單位
11、名稱合起來叫做名數(shù)。單名數(shù):只帶有一個單位名稱的叫做單名數(shù)。復名數(shù):帶有兩個或兩個以上單位名稱的叫做復名數(shù)。6名數(shù)的改寫:高級單位的名數(shù)化成低級單位的名數(shù)乘進率,低級單位的名數(shù)化成高級單位的名數(shù)除以進率。小升初數(shù)學必考知識點5 1.和差倍問題 和差問題 和倍問題 差倍問題已知條件 幾個數(shù)的和與差 幾個數(shù)的和與倍數(shù) 幾個數(shù)的差與倍數(shù)公式適用范圍 已知兩個數(shù)的和,差,倍數(shù)關系公式 (和-差)2=較小數(shù)較小數(shù)+差=較大數(shù)和-較小數(shù)=較大數(shù)(和+差)2=較大數(shù)較大數(shù)-差=較小數(shù)和-較大數(shù)=較小數(shù)和(倍數(shù)+1)=小數(shù)小數(shù)倍數(shù)=大數(shù)和-小數(shù)=大數(shù)差(倍數(shù)-1)=小數(shù)小數(shù)倍數(shù)=大數(shù)小數(shù)+差=大數(shù)關鍵問題 求
12、出同一條件下的和與差 和與倍數(shù) 差與倍數(shù)2.年齡問題的三個基本特征:兩個人的年齡差是不變的;兩個人的年齡是同時增加或者同時減少的;兩個人的年齡的倍數(shù)是發(fā)生變化的;3.歸一問題的基本特點:問題中有一個不變的量,一般是那個單一量,題目一般用照這樣的速度等詞語來表示。關鍵問題:根據(jù)題目中的條件確定并求出單一量;4.植樹問題基本類型 在直線或者不封閉的曲線上植樹,兩端都植樹 在直線或者不封閉的曲線上植樹,兩端都不植樹 在直線或者不封閉的曲線上植樹,只有一端植樹 封閉曲線上植樹基本公式 棵數(shù)=段數(shù)+1棵距段數(shù)=總長 棵數(shù)=段數(shù)-1棵距段數(shù)=總長 棵數(shù)=段數(shù)棵距段數(shù)=總長關鍵問題 確定所屬類型,從而確定棵
13、數(shù)與段數(shù)的關系5.雞兔同籠問題基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;基本思路:假設,即假設某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):假設后,發(fā)生了和題目條件不同的差,找出這個差是多少;每個事物造成的差是固定的,從而找出出現(xiàn)這個差的原因;再根據(jù)這兩個差作適當?shù)恼{整,消去出現(xiàn)的差?;竟剑喊阉须u假設成兔子:雞數(shù)=(兔腳數(shù)總頭數(shù)-總腳數(shù))(兔腳數(shù)-雞腳數(shù))把所有兔子假設成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù))關鍵問題:找出總量的差與單位量的差。6.盈虧問題基本概念:一定量的.對象,按照某種標準分組,產生一種結果:按照另一種標準分組,又產生一種
14、結果,由于分組的標準不同,造成結果的差異,由它們的關系求對象分組的組數(shù)或對象的總量.基本思路:先將兩種分配方案進行比較,分析由于標準的差異造成結果的變化,根據(jù)這個關系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量.基本題型:一次有余數(shù),另一次不足;基本公式:總份數(shù)=(余數(shù)+不足數(shù))兩次每份數(shù)的差當兩次都有余數(shù);基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))兩次每份數(shù)的差當兩次都不足;基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))兩次每份數(shù)的差基本特點:對象總量和總的組數(shù)是不變的。關鍵問題:確定對象總量和總的組數(shù)。7.牛吃草問題基本思路:假設每頭牛吃草的速度為1份,根據(jù)兩次不同的吃法,求出其中的總草量
15、的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。基本特點:原草量和新草生長速度是不變的;關鍵問題:確定兩個不變的量?;竟剑荷L量=(較長時間長時間牛頭數(shù)-較短時間短時間牛頭數(shù))(長時間-短時間);總草量=較長時間長時間牛頭數(shù)-較長時間生長量;8.周期循環(huán)與數(shù)表規(guī)律周期現(xiàn)象:事物在運動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。周期:我們把連續(xù)兩次出現(xiàn)所經過的時間叫周期。關鍵問題:確定循環(huán)周期。閏 年:一年有366天;年份能被4整除;如果年份能被100整除,則年份必須能被400整除;平 年:一年有365天。年份不能被4整除;如果年份能被100整除,但不能被400整除;9.平均數(shù)基本公
16、式:平均數(shù)=總數(shù)量總份數(shù)總數(shù)量=平均數(shù)總份數(shù)總份數(shù)=總數(shù)量平均數(shù)平均數(shù)=基準數(shù)+每一個數(shù)與基準數(shù)差的和總份數(shù)基本算法:求出總數(shù)量以及總份數(shù),利用基本公式進行計算.基準數(shù)法:根據(jù)給出的數(shù)之間的關系,確定一個基準數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準數(shù);以基準數(shù)為標準,求所有給出數(shù)與基準數(shù)的差; 再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準數(shù)的和,就是所求的平均數(shù),具體關系見基本公式。10.抽屜原理抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:4=
17、4+0+0 4=3+1+0 4=2+2+0 4=2+1+1觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。抽屜原則二:如果把n個物體放在m個抽屜里,其中nm,那么必有一個抽屜至少有:k=n/m +1個物體:當n不能被m整除時。k=n/m個物體:當n能被m整除時。理解知識點:_表示不超過_的最大整數(shù)。例4.351=4;0.321=0;2.9999=2;關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進行運算。11.定義新運算基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合
18、)運算?;舅悸罚簢栏癜凑招露x的運算規(guī)則,把已知的數(shù)代入,轉化為加減乘除的運算,然后按照基本運算過程、規(guī)律進行運算。關鍵問題:正確理解定義的運算符號的意義。注意事項:新的運算不一定符合運算規(guī)律,特別注意運算順序。每個新定義的運算符號只能在本題中使用。12.數(shù)列求和等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.基本思路:等差數(shù)
19、列中涉及五個量:a1 ,an, d, n,sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。基本公式:通項公式:an = a1+(n-1)d;通項=首項+(項數(shù)一1) 公差;數(shù)列和公式:sn,= (a1+ an)n數(shù)列和=(首項+末項)項數(shù)項數(shù)公式:n= (an+ a1)項數(shù)=(末項-首項)公差+1;公差公式:d =(an-a1)(n-1);公差=(末項-首項)(項數(shù)-1);關鍵問題:確定已知量和未知量,確定使用的公式;13.二進制及其應用十進制:用09十個數(shù)字表示,逢10進1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示
20、20,百位上的2表示200。所以234=200+30+4=2102+310+4。=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+A3102+A2101+A1100注意:N0=1;N1=N(其中N是任意自然數(shù))二進制:用01兩個數(shù)字表示,逢2進1;不同數(shù)位上的數(shù)字表示不同的含義。(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+A322+A221+A120注意:An不是0就是1。十進制化成二進制:根據(jù)二進制滿2進1的特點,用2連續(xù)去除這個數(shù),直到商為0,然后把每次
21、所得的余數(shù)按自下而上依次寫出即可。先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進制展開式特點即可寫出。14.加法乘法原理和幾何計數(shù)加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法,在第n類方法中有mn種不同方法,那么完成這件任務共有:m1+ m2. +mn種不同的方法。關鍵問題:確定工作的分類方法?;咎卣鳎好恳环N方法都可完成任務。乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法不管前面n-1步用哪種方法,第n步總有m
22、n種方法,那么完成這件任務共有:m1m2. mn種不同的方法。關鍵問題:確定工作的完成步驟。基本特征:每一步只能完成任務的一部分。直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。直線特點:沒有端點,沒有長度。線段:直線上任意兩點間的距離。這兩點叫端點。線段特點:有兩個端點,有長度。射線:把直線的一端無限延長。射線特點:只有一個端點;沒有長度。數(shù)線段規(guī)律:總數(shù)=1+2+3+(點數(shù)一1);數(shù)角規(guī)律=1+2+3+(射線數(shù)一1);數(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)寬的線段數(shù):數(shù)長方形規(guī)律:個數(shù)=11+22+33+行數(shù)列數(shù)15.質數(shù)與合數(shù)質數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質
23、數(shù),也叫做素數(shù)。合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。質因數(shù):如果某個質數(shù)是某個數(shù)的約數(shù),那么這個質數(shù)叫做這個數(shù)的質因數(shù)。分解質因數(shù):把一個數(shù)用質數(shù)相乘的形式表示出來,叫做分解質因數(shù)。通常用短除法分解質因數(shù)。任何一個合數(shù)分解質因數(shù)的結果是唯一的。分解質因數(shù)的標準表示形式:N=,其中a1、a2、a3an都是合數(shù)N的質因數(shù),且a1 p求約數(shù)個數(shù)的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)互質數(shù):如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質數(shù)。16.約數(shù)與倍數(shù)約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾
24、個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。最大公約數(shù)的性質:1、 幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質數(shù)。2、 幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。3、 幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。4、 幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。例如:12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有:1、2、3、6、9、18;那么12和18的公約數(shù)有:1、2、3、6;那么12和18最大的公約數(shù)是:6,記作(12,18)=6;求最大公約數(shù)基本方法:1、分解質因數(shù)法:先分解質因數(shù),然后把相同的因數(shù)連乘起來。2、短除法:先找公有的
25、約數(shù),然后相乘。3、輾轉相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。12的倍數(shù)有:12、24、36、4818的倍數(shù)有:18、36、54、72那么12和18的公倍數(shù)有:36、72、108那么12和18最小的公倍數(shù)是36,記作12,18=36;最小公倍數(shù)的性質:1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質因數(shù)的方法17.數(shù)的整除一、基本概念和符號:1、整除:如果
26、一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號:整除符號|,不能整除符號因為符號,所以的符號二、整除判斷方法:1. 能被2、5整除:末位上的數(shù)字能被2、5整除。2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。4. 能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。5. 能被7整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。6. 能被11整除:末三位上數(shù)字所組成的數(shù)
27、與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。7. 能被13整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。三、整除的性質:1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。18.余數(shù)及其應用基本概念:對任意自然數(shù)
28、a、b、q、r,如果使得ab=qr,且0余數(shù)的性質:余數(shù)小于除數(shù)。若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。19.余數(shù)、同余與周期一、同余的定義:若兩個整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。已知三個整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作ab(mod m),讀作a同余于b模m。二、同余的性質:自身性:aa(mod m);對稱性:若ab(mod m),則ba(mod m);傳遞性:若ab(mod m),b
29、c(mod m),則a c(mod m);和差性:若ab(mod m),cd(mod m),則a+cb+d(mod m),a-cb-d(mod m);相乘性:若a b(mod m),cd(mod m),則ac bd(mod m);乘方性:若ab(mod m),則anbn(mod m);同倍性:若a b(mod m),整數(shù)c,則ac bc(mod m三、關于乘方的預備知識:若A=ab,則MA=Mab=(Ma)b若B=c+d則MB=Mc+d=McMd四、被3、9、11除后的余數(shù)特征:一個自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則Mn(mod 9)或(mod 3);一個自然數(shù)M,_表示M的各個奇數(shù)位
30、上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則MY-_或M11-(_-Y)(mod 11);五、費爾馬小定理:如果p是質數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-11(mod p)。20.分數(shù)與百分數(shù)的應用基本概念與性質:分數(shù):把單位1平均分成幾份,表示這樣的一份或幾份的數(shù)。分數(shù)的性質:分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。分數(shù)單位:把單位1平均分成幾份,表示這樣一份的數(shù)。百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。常用方法:逆向思維方法:從題目提供條件的反方向(或結果)進行思考。對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。轉化思維方法:把一
31、類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數(shù)關系;把不同的標準(在分數(shù)中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調整,求出最后結果。量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。替換思維方法:用一種量代替另一種量,從而使數(shù)量關
32、系單一化、量率關系明朗化。同倍率法:總量和分量之間按照同分率變化的規(guī)律進行處理。濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。21.分數(shù)大小的比較基本方法:通分分子法:使所有分數(shù)的分子相同,根據(jù)同分子分數(shù)大小和分母的關系比較。通分分母法:使所有分數(shù)的分母相同,根據(jù)同分母分數(shù)大小和分子的關系比較。基準數(shù)法:確定一個標準,使所有的分數(shù)都和它進行比較。分子和分母大小比較法:當分子和分母的差一定時,分子或分母越大的分數(shù)值越大。倍率比較法:當比較兩個分子或分母同時變化時分數(shù)的大小,除了運用以上方法外,可以用同倍率的變化關系比較分數(shù)的大小。(具體運用見同倍率變化規(guī)律)轉化比較方法:把所有分數(shù)轉化成小數(shù)
33、(求出分數(shù)的值)后進行比較。倍數(shù)比較法:用一個數(shù)除以另一個數(shù),結果得數(shù)和1進行比較。大小比較法:用一個分數(shù)減去另一個分數(shù),得出的數(shù)和0比較。倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小?;鶞蕯?shù)比較法:確定一個基準數(shù),每一個數(shù)與基準數(shù)比較。22.分數(shù)拆分一、 將一個分數(shù)單位分解成兩個分數(shù)之和的公式: =+;=+(d為自然數(shù));23.完全平方數(shù)完全平方數(shù)特征:1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。2. 除以3余0或余1;反之不成立。3. 除以4余0或余1;反之不成立。4. 約數(shù)個數(shù)為奇數(shù);反之成立。5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6. 奇數(shù)平方個位數(shù)字是奇數(shù);
34、偶數(shù)平方個位數(shù)字是偶數(shù)。7. 兩個相臨整數(shù)的平方之間不可能再有平方數(shù)。平方差公式:_2-Y2=(_-Y)(_+Y)完全平方和公式:(_+Y)2=_2+2_Y+Y2完全平方差公式:(_-Y)2=_2-2_Y+Y224.比和比例比:兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫比的后項。比值:比的前項除以后項的商,叫做比值。比的性質:比的前項和后項同時乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個比相等的式子叫做比例。a:b=c:d或比例的性質:兩個外項積等于兩個內項積(交叉相乘),ad=bc。正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正
35、比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。按比例分配:把幾個數(shù)按一定比例分成幾份,叫按比例分配。25.綜合行程基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.基本公式:路程=速度時間;路程時間=速度;路程速度=時間關鍵問題:確定運動過程中的位置和方向。相遇問題:速度和相遇時間=相遇路程(請寫出其他公式)追及問題:追及時間=路程差速度差(寫出其他公式)流水問題:順水行程=(船速+水速)順水時間逆水行程=(船速-水速)逆水時間順水速度=船速+水速逆水速度=船速-水速靜水速度=(順
36、水速度+逆水速度)2水 速=(順水速度-逆水速度)2流水問題:關鍵是確定物體所運動的速度,參照以上公式。過橋問題:關鍵是確定物體所運動的路程,參照以上公式。主要方法:畫線段圖法基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。26.工程問題基本公式:工作總量=工作效率工作時間工作效率=工作總量工作時間工作時間=工作總量工作效率基本思路:假設工作總量為1(和總工作量無關);假設一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公倍數(shù)),利用上述三個基本關系,可以簡單地表示出工作效率及工作時間.關鍵問題:確定工作量、工作
37、時間、工作效率間的兩兩對應關系。經驗簡評:合久必分,分久必合。27.邏輯推理基本方法簡介:條件分析假設法:假設可能情況中的一種成立,然后按照這個假設去判斷,如果有與題設條件矛盾的情況,說明該假設情況是不成立的,那么與他的相反情況是成立的。例如,假設a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。條件分析列表法:當題設條件比較多,需要多次假設才能完成時,就需要進行列表來輔助分析。列表法就是把題設的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內的題設情況,運用邏輯規(guī)律進行判斷。條件分析圖表法:當兩個對象之間只有兩種關系時,就可用連線表示兩個對象之間的關系,
38、有連線則表示是,有等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認識或不認識兩種狀態(tài),有連線表示認識,沒有表示不認識。邏輯計算:在推理的過程中除了要進行條件分析的推理之外,還要進行相應的計算,根據(jù)計算的結果為推理提供一個新的判斷篩選條件。簡單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關的關系式,從而得到問題的解決。28.幾何面積基本思路:在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進行割補,平移、旋轉、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進行計算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。常
39、用方法:1. 連輔助線方法2. 利用等底等高的兩個三角形面積相等。3. 大膽假設(有些點的設置題目中說的是任意點,解題時可把任意點設置在特殊位置上)。4. 利用特殊規(guī)律等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)梯形對角線連線后,兩腰部分面積相等。圓的面積占外接正方形面積的78.5%。29.立體圖形名稱 圖形 特征 表面積 體積長方體 8個頂點;6個面;相對的面相等;12條棱;相對的棱相等; S=2(ab+ah+bh) V=abh=Sh正方體 8個頂點;6個面;所有面相等;12條棱;所有棱相等; S=6a2 V=a3圓柱體 上下兩底是平行且相等的圓;
40、側面展開后是長方形; S=S側+2S底S側=Ch V=Sh圓錐體 下底是圓;只有一個頂點;l:母線,頂點到底圓周上任意一點的距離; S=S側+S底S側=rl V=Sh球體 圓心到圓周上任意一點的距離是球的半徑。 S=4r2 V=r330.時鐘問題快慢表問題基本思路:1、 按照行程問題中的思維方法解題;2、 不同的表當成速度不同的運動物體;3、 路程的單位是分格(表一周為60分格);4、 時間是標準表所經過的時間;小升初數(shù)學必考知識點6 比和比例 1比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。比例的意義:表示兩個比相等的式子叫做比例。2求比值:比的前項除以比的后項所得的商叫做比值。3比的基本性質:比的
41、前項和后項都乘或除以相同的數(shù)(0除外),比值不變。比例的基本性質:在比例里,兩個外項的積等于兩個內項的積。4應用比的基本性質可以化簡比;應用比例的基本性質可以判斷兩個比是否能組成比例,也可以求比例里的未知項,也就是解比例。5用字母表示比與除法和分數(shù)的關系。a:b=ab=(b0)6比例尺:我們把圖上距離和實際距離的比,叫做這幅圖的比例尺。7圖上距離:實際距離=比例尺或=比例尺實際距離=圖上距離比例尺 圖上距離=實際距離_比例尺8求比值的方法:根據(jù)比值的意義,用前項除以后項,結果是一個數(shù)。化簡比的方法:根據(jù)比的基本性質,把比的前項和后項都乘或除以相同的數(shù)(零除外),結果是一個最簡整數(shù)比。9正比例關系:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。用式子表示:=k(一定),用圖表示正比例關系是一條直線。10反比例關系:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們之間的關系叫做反比例關系。用式子表示
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年版礦產資源探礦權出讓合同范本(含礦產資源勘查風險分擔)3篇
- 2025年度內蒙古草原生態(tài)旅游承包經營合同3篇
- 2025年度音樂教育項目藝人授課合同3篇
- 二零二五年度文化旅游綜合體租賃合同書3篇
- 年度單抗導向藥物戰(zhàn)略市場規(guī)劃報告
- 二零二五年度東易日盛跑路事件客戶賠償與調解合同3篇
- 2024瑜伽館瑜伽教練勞動合同范本及教練與學員溝通規(guī)范3篇
- 二零二五版“520”荔枝電商法治講堂講師聘用合同3篇
- 2024版建筑水電分包合同范本
- 二零二五年度房產評估咨詢合同樣本4篇
- 電線電纜加工質量控制流程
- 山東省淄博市張店區(qū)祥瑞園小學?-2024-2025年第一學期一年級班主任經驗分享(著眼于愛 著手于細)【課件】
- 提優(yōu)精練08-2023-2024學年九年級英語上學期完形填空與閱讀理解提優(yōu)精練(原卷版)
- DB4511T 0002-2023 瓶裝液化石油氣充裝、配送安全管理規(guī)范
- 企業(yè)內部客供物料管理辦法
- 婦科臨床葡萄胎課件
- 三基三嚴練習題庫與答案
- 傳媒行業(yè)突發(fā)事件應急預案
- 債務抵租金協(xié)議書范文范本
- 藥學技能競賽標準答案與評分細則處方
- 2025屆高考英語 716個閱讀理解高頻詞清單
評論
0/150
提交評論