版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Integrated
Circuits
Golden
Moore
&
VonannNano-Electronics
EraGenerality
is
KingIntegrated
Circuits
and
ICTOutlines2A
Game
of
Calculation?230.67
=
1?,708,401,590What
does
this
number
mean?Why
do
we
need
to
know
this
number?If
we
say
that
some
industry
grows
with
a
year
to
year
rate
of
2n,
n=year,
is
this
true?The
number
of
transistors
on
a
singlesilicon
chip
doubled
every
18
months.
Ifonly
1
transistor
existed
on
a
chip
in
1965,today
a
single
chip
may
contain
more
than1.7
billion
transistors,
as
(20111965)
×12
÷
18
=30.67.We
are
certainly
shocked
by
this
amazing
law.We
are
curiously
to
know
why
the
law
has
been
valid
for
so
longtime.We
are
also
eagerly
to
know
if
and
how
long
this
law
will
last
inthe
future.3Binary
and
Digital
SystemDecimal<->Binary0<->00001<->00012<->00103<->00114<->01005<->01016<->01107<->01118<->10009<->1001Elements
of
decimal
and
binary
systemDecimal
System:
0,
1,
2,
3,
4,
5,
6,
7,
8,
9Binary
System:
0,
1Real
world
isogA
component
dealing
withdecimal
has
very
high
cost數(shù)模字?jǐn)M世世界界是是虛真擬實的的4Amplifier
and
Binary
CodeAmplifier開到最大:“1”完全關(guān)閉:“0”注:假設(shè)水流時恒定的大壩大壩電勱機發(fā)電機5Vacuum
Tube飛樂266-TH型6電子管3波段收音機陽極6柵極陰極通電后陰極向陽極發(fā)射電子陽極收集電子通過在柵極施加一個電位可以控制仍陰極到陽極通過的電子量要想使陰極能夠發(fā)射電子就要將陰極加熱到數(shù)百攝氏度高溫陰極丌發(fā)射電子時為“0”陰極發(fā)射的電子全部被陽極接收時為“1”ENIAC:
1sectronics
Computer7TransistorW.
Shockley,
J.Bardeen
and
W.
Brattain1947年,第一支晶體管在貝爾實驗室誕生,巴丁、肖兊利和布萊坦獲得1956年物理學(xué)獎8Principle
of
Semiconductor
Transistor柵G源S漏D多晶硅金屬層金屬氧化物半導(dǎo)體晶體管(MOS晶體管)結(jié)構(gòu)圖GSD+
+
+
+
+
+
+
+氧化層
擴散區(qū)硅襯底9Integrated
Circuits1958年,J.
Kilby發(fā)明了集成電路的理論模型1959年,R.Noyce發(fā)明了今天的集成電路PentiumIIIPentiumIV2000年,J.
Kilby獲得物理學(xué)獎10Evolution
of
Computer11Integrated
Circuits
Exist
Everywhere12Integrated
Circuits
Golden
Moore
&
VonannNano-Electronics
EraGenerality
is
KingIntegrated
Circuits
and
ICTOutlines13IntroductionMoore
&
VonannVonannGolden
MooreScaling-downVon
annArchitectureSemiconductorComputer14Golden
Moore15With
unit
cost
falling
as
thenumber
of
components
percircuit
rise,
by
1975economics
may
dictatesqueezing
as
many
as65,000
components
on
asingle
silicon
chip.Moore’s
Law16Robert
Dennard
and
Dennard’s
Law17Scaling-down等比例縮小的技術(shù)代等比例縮小技術(shù)是年復(fù)一年地將一組(通常多于20個)支配硅器件的技術(shù)參數(shù)同步縮小摩爾定律講的是技術(shù)密度倍增的趨勢迪納德定律講的是實現(xiàn)密度倍增的方法兩者統(tǒng)稱為“摩爾定律”等比列縮小是實現(xiàn)摩爾定律的方法18GateWiringn+sourcen+drainL/tox/W/xd/Voltage
V/P
substrate,
do*NASCALING:Voltage:Oxide:Wire
width:Gate
width:Diffusion:Substrate:V/
tox/
W/
L/
xd/*NARESULT:Higher
density:
~2Higher
speed:
~
Power/ckt:
~1/2Power
Density:
~ConstantPower
Density
=
Constant?190.111010010000.011Classic
Scalingtox(A)Vdd(V)0.1Ga ength
Lgate(m)DramaticallyIncreasing
ofPower
DensityPower
Density
≠
ConstantReasons
of
the
shiftUnacceptable
leakagecurrentHigher
voltage
implieshigher
performanceResult
of
the
shift2010110210310410510610710070
75
80
85
90
95
00
05
10
15
20
25UnscaledPower
Density1%DeviationAir
CoolingLimit“Perfect”
PowerDensity
ScalingLogic
Power
Density
(Watts/cm2)Why
Power
Density
Is
Important21Power
Consumption
is
key2224681012900010Module
Heat
Flux
(Watts/cm2)IBM360IBM370
IBM3033IBM4381IBM3081Fujisu
M380IBM3090CDC
Cyber
205Fujisu
M780NTTIBM3090SFujisu
VP2000IBMS9000BipolarCMOSApacheMercedPentium
IIIBM
RY4PulsarIBM
RY6IBM
RY7PentiumIVIBMRY5IBMGP?電熨斗的功率密度:5W/cm2Materials
and
Device23Signal
Integrity頻率越高,波長越短。當(dāng)天線的尺寸不波長處在同一量級的時候,天線將輻射和接受電磁波。今天的集成電路運行在GHz,信號完整性是個嚴(yán)峻的。24ENIAC:
Application
Specific
ComputerENIAC是一臺與為 軍方計算火
彈道軌跡設(shè)計的與用計算機。雖然具備一定的編程能力,但程序是事先預(yù)置好的。改變程序就要求改變硬件的連線結(jié)構(gòu)。嚴(yán)格意義上講,ENIAC丌是一臺通用計算機。ENIAC運行時,安排了一批年輕的女性
按照計算要求插拔眾多的接頭,以實現(xiàn)丌同的運算。工作十分繁瑣,出錯概率很大,效率很低。硬件的準(zhǔn)備時間大大超過實際的計算所需的時間。25The
Von ann
architecture
is
a
designmodel
for
a
stored-program
digital
computerthat
uses
a
central
processingunit
(CPU)
and
asingle
separate
storage
structure
(memory)
tohold
both
instructions
and
data.of
the
Von
ann’sCharacteristicsarchitecture:a)
memory;control
unit;arithmetic
logic
unit;input
/
output
interface.The
disadvantage
of
Von
annarchitecture:
shared
memory
for
instructionsand
data
with
one
data
bus
and
one
addressbus
between
processor
and
memory.Instructions
and
data
have
to
be
fetched
insequential
order
(known
as
the
Vonann
Bottleneck),
limiting
the
operationbandwidth.Von ann
Architecture26Instruction
=
Low
Efficiency取指運算結(jié)果指令地址有效讀使能數(shù)據(jù)有效寫入指令寄存器數(shù)據(jù)地址有效讀使能取操作數(shù)二數(shù)據(jù)有效寫入寄存器指令譯碼數(shù)據(jù)地址有效讀使能取操作數(shù)一數(shù)據(jù)有效寫入累加寄存器數(shù)據(jù)地址有效寫使能數(shù)據(jù)有效寫入
器完成一個運算需要大量的準(zhǔn)備工作想加快運算速度要就加快所有環(huán)節(jié)涉及大量對外部
器的操作信號傳辒需要涉及全局性的互連“性能墻”“
墻”“功耗墻”2+3=527Various
ArchitectureHarvardVLIWMulti-CoresMany-CoresDual-CoresMulti-threadsOut-of-orderExecutionMulti-IssuesPipeline2860年前,硬件很貴復(fù)用資源是必須的Hardware
=
Expensive29Integrated
Circuits
Golden
Moore
&
VonannNano-Electronics
EraGenerality
is
KingIntegrated
Circuits
and
ICTOutlines30Performance,
Cost
and
Power提升性能是永恒的保證性能的前提下降低成本保證性能的前提下降低功耗保證性能和成本的前提下降低功耗保證性能和功耗的前提下降低成本導(dǎo)提致升功性耗能上必升然致增提成加升本資性上源能升,要導(dǎo)求致減降性少低能資成下源本降,要導(dǎo)求要降求低降成低本性通能常31Economy:
Heavy
InvestmentHuge
Investment
Stops
Investor16nm~12-15B
$22nm~8-10B
$32nm~5-7B
$45nm~3.5-5B$65nm~2.5-3B
$32Cost
Per
Transistor
Reduction(US
Dollar)Source:Industry
Restructuring,
IBS
Report,
2007Scaling-down
≠
Cost-down130nm2,45090nm2,81065nm3,
106降45nm4,024,32nm4,817要22nm6,63822nm之后,成本下已經(jīng)不是主要任務(wù)而提升性能成為主目標(biāo)。Economy:
Cost
Reduction33Source:Industry
Restructuring,
IBS
Report,
2007Lower
UtilizationEconomy:
R&D
Expense3435Only
a
few
high-end
chip
makers
todaycan
even
afford
the
exorbitant
cost
ofNEXT-GENERATION
RESEARCH
AND
DESIGN,
muchless
the
fabs
to
build
them.
將來
數(shù)高端設(shè)計公司可以負(fù)擔(dān)昂貴的研發(fā)費用,而更少的公司有能力制造新一代的產(chǎn)品。R.
Colin
Johnson,“IBM
Fellow:
Moore’s
Law
Defunct,”
EE
Times,
4/07/09Integrated
Circuit:
Game
of
Ri
anWally
Rhines,
Chairman
&
CEO,
Mentraphics,
August
2010Scaling-down
&
Vonn
ISAPerformance,
Cost
and
Power16nm22nm32nm45nm65nm12nm90nm130nmScaling-down
&
Vonann
ArchitecturePer
ChipScaling-down
&
Vonann
Architecture
&
PowerPer
Chip通用準(zhǔn)則:高性能、低功耗、低成本36More
Moore
and
More
Than
MooreSource:2007
ITRS37Physical
Limits:ParameterITRS
22nm
node
(2016)Physical
LimitMinimum
dimension9
nanometers1.5
nanometersFastest
switching
time150
femto-seconds40
femto-secondsPower
dissipation
limits:
“Device-at-the-physical-limit”
will
dissipateseveral
thousand
Watts/square-cmTechnological
Limits:
Pushing
CMOS
to
its
ultimaimits
requiresrevolutionary
materials
and
deviceinnovations
that
havesignificantscientific
and
engineering
barriersEconomic
Limits:
Implementing
all
the
technology
innovations
mayraise
manufacturing
and
development
costs
to
being
beyond
thereach
of
all
but
a
few
global
entities.Source:
G.
Scalise,
WSC2007Limits
of
CMOS
Technology38ASICSingle-ProcessorSoCDual-ProcessorSoCSoC
EraMPSoC
EraIPLogic1IPLogic1IPLogic1μPMemμPMemμPMemμPMemμPMemμPMemMemMemMemμPMemoryIP
Logic1IP
Logic2IP
Logic3IP
Logic4DSPμPMemoryIPLogic1IPLogic2IPLogic3IPLogic4IPLogicASIPASIPASIPIPLogic1MemMemMemDSPDSPDSP
ASIC
Era
198519952005Multiple-ProcessorSoC來源:
,CIC’2008
蘇州System
on
Programmable
Chip39Shared
MemorycacheprivateprivateprivateprivateMEMPeripheryChip
BussoftwarehardwareApplicationArchitecturePEDriversOperating
SystemRTOS-APIApplicationsArchitecture
DesigntimertimerBusCtrlI/O
INTCORE40全球大約有超出20萬名患者植入人工耳蝸,長時間持續(xù)供電是使用中遇到的最大問題。隨著3G服務(wù)的普及,規(guī)頻逐漸成為時尚一族的新寵,功耗成為最受關(guān)心的問題之一。Low
Power
Technology41頭盔安裝顯示器攜帶式電池組手指觸摸操作裝置平板顯示器/鍵盤Extreme
Low
Power
Design42器市場觃模約占IC總市場的22%,其中以DRAM和Flash為代表的容性
技術(shù)是當(dāng)前應(yīng)用的主流
技術(shù)。面向高性能計算的DRAM2010年發(fā)展到44nm/4Gb采用ZrO2-HfO2
MIM疊層電容單元面積6F22016年將發(fā)展到22nm/4F2面向高密度數(shù)據(jù)
的Flash2010年發(fā)展到32nm/32Gb采用2-3值浮柵
技術(shù)單元面積4F2/1.3F2(每位)2016年將發(fā)展到
18nm/4bMLCDRAMNAND-FlashSemiconductor
Memory43Top
ElectrodeAmorphousContactPCMaterialHeaterGSTFeRAM鐵電材料極性翻轉(zhuǎn)導(dǎo)致電容變化非電荷型容性器采用2T2C/1T1C結(jié)構(gòu)單元尺寸22-16
F2優(yōu)點:低壓、耐疲勞缺點:單元尺寸大、破壞性MRAM
磁性材料自旋極化翻轉(zhuǎn)導(dǎo)致巨磁電阻或磁隧穿結(jié)電流變化阻性
器采用1T1R/1D1R結(jié)構(gòu)單元尺寸45-20
F2優(yōu)點:低壓、耐疲勞缺點:尺寸、電流大PCRAM/RRAM熱(電壓)作用下材料結(jié)晶相(導(dǎo)電)變化阻性
器采用1T1R/1D1R結(jié)構(gòu)單元尺寸4-5
F2優(yōu)點:低壓、多值操作缺點:尺寸縮小后材料可靠性及耐疲勞性差New
Memory
Technology44Memory
TechnologyFilament機制的實驗證明:TEM
觀察到了TiO2
薄膜中Ti4O7Filament的“連通”不“斷裂”D.K.Kwon,
Nature
Nanotech,
5,
148,
201045RRAM在速度、功耗、低壓操作等方面均優(yōu)于PCM,其擦寫次數(shù)也達(dá)到了109(Flash是106),目前制約其
產(chǎn)品化的問題是集成觃模。仍結(jié)構(gòu)和熱耗散的角度看,RRAM是最適于Scaling-down的一種結(jié)構(gòu)。目前制約其集成度提高的主要是TMO變阻單元的
“重復(fù)性”和“一致性”問題。RRAM的結(jié)構(gòu)50nm線寬的TiO2
Memristor(HP公司)Challenges
ofMemory46Comparison
of
Different
Memories技術(shù)DRAMFG-NORFG-NANDCTMFeRAMMRAMSTT-MRAMPRAMRRAM技術(shù)節(jié)點(nm)44-1845-2532-2225-10180-130130-6565-3245-18NA非揮發(fā)性NoYesYesYesYesYesYesYesYes單元尺寸(F2)6-49-115-4/1.34/1.022-164520-105-45/1.2位數(shù)122-42-411122-4讀速度(ns)~1010-30~50~50<20<20<20<50<20寫/擦速度(ns)~10104-103106-105105-10410-2010-2010-2050-120<100耐疲勞次數(shù)>1016105106-104106-104109-1015>3×1016>1012106-109NA功耗LowHighMedMedLowHighMedMedLow可縮小性MedNoMedYesNNMedYesYes1
主要參考ITRS-2009及近年來一些相關(guān)研究
;部分?jǐn)?shù)據(jù)為理論值或
值,而非實際
的數(shù)據(jù);主要針對獨立式器進(jìn)行對比,上表未包括各種及特殊應(yīng)用;47電荷操作容性器的物理極限及統(tǒng)計學(xué)限制電容隨工藝縮小丌斷變小,
電荷下降,可靠性變差電容間耦合效應(yīng)急劇加劇,導(dǎo)致操作可控性下降器件漏電增加,信號完整性下降操作電壓受各種
介質(zhì)及絕緣介質(zhì)厚度限制難以降低22-16nm
DRAM技術(shù)4F2單元結(jié)構(gòu)技術(shù)及低功耗設(shè)計技術(shù)高介電材料及MIM電容技術(shù)及低漏電
晶體管技術(shù)工藝制造技術(shù):光刻、金屬柵、良率控制等目前無可替代技術(shù):STT-MRAM可縮小性尚達(dá)丌到要求22-16nm
NAND-Flash技術(shù)25nm以下(2012年)將必須改用電荷俘獲
技術(shù)(預(yù)計可到10-16nm)耐疲勞次數(shù)將下降到10K以下,要求研發(fā)12-32位糾錯技術(shù)可替代技術(shù):4b-CTM+3DNOR-Flash在32-25nm將可能被CTM、PCRAM及RRAM等新型技術(shù)取代Challenges
of
Memory
Technology48Integrated
Circuits
Golden
Moore
&
VonannNano-Electronics
EraGenerality
is
KingIntegrated
Circuits
and
ICTOutlines49General
Purpose
Integrated
Circuits50From
Single-core
to
Multi-coreSingle
core
processorPerformance
–
Clock
rate51Dual-core
processorPerformance
–
ResourcesFrom
Multi-core
to
Many-coreMulti-core
processorPerformance
–
Multi-task52Many-core
processorPerformance
–
ParallelizationHomogeneous
and
HeterogeneousSeungjin
Lee,
etc."A
345mWHeterogeneousMany-CoreProcessor
withanIn
ligentInference
Enginefor
Robust
ObjectRecognition",
ISSCC2010,
February
10,2010,
pp.
332-333Jinuk
Luke
Shin,
etc."A
40nm
16-Core128-Thread
CMTSPARC
SoCProcessor",
ISSCC2010,
February
8,2010,
pp.98-9953GranularityD.
Rossi,etc.
"A
Heterogeneous
Digital
Signal
Processor
Implementation
forDynamicallyReconfigurable
Computing",
CICC
2009,
pp.641
-
64432-bit54Inter-ConnectionsBus-connectCross-barNoCSegmentedhierarchical1-D2-D(mesh)55FPGA:
From
Simple
to
ComplexLogic: Field
Programmable
Gate
ArrayI/O
BlocksCLBsPIsDRAMDSPCPUBuffers…56I/O
BlocksCLBsPIsFPGA:
From
Logic
to
ProcessingLogic: Field
Programmable
Gate
ArrayProgrammable
LogicLogic
FunctionProgrammableFunctional
BlocksSignal
ProcessingComputing57Logic: Field
Programmable
Gate
ArrayHomogeneous
and
HeterogeneousCombination
of
differentFunctional
blocks58Combination
of
sameFunctional
blocksMany-Cores
vs.
FPGAConvergence: A
General
Trend?Many-core
Processor59High
PerformanceComplex
FPGA?Dynamic
Reconfigurable,Reprogrammable,Computing/Logic
ArrayDemand
to
RCPPerformance,
Cost,
Power
and
Flexibility名稱性能成本功耗靈活性ASIC極高低小差FPGA高較高較大較好CPU中高大極好RCP極高較低較小好ASIC:
Application
Specific
Integrated
CircuitFPGA:
Field
Programmable
Gate
ArrayCPU:
Central
Processing
UnitRCP:
Re-Configurable
Processor計算性能單位面積性能(MOPS/mm2)能耗效率(nJ/Operation)靈活性RISC一般<100~1極好DSP一般<100~1極好RISC多核高<100~1好DSP多核高<100~1好ASIC極高>1000~0.01差RCP極高~1000~0.03好6061Computation/Control
IntensiveReconfigurable
Computing:
DatapathIF
(condition
=
1)THENr1
=b
*b;r2=
a
*
c;r2
=r2
*4;r1
=r1
-
r2;IF
(r1
<
0)
THENstate
=
‘1’;ELSEstate
=
‘0’;
r3=
r1*
4;r3=
r3+
1;r3=
r3*
0.2;FOR
i
=
1
to
3LOOPr4
=
r1
/
r3;r3
=
r3
+
r4;r3
=r3
/
2;END
LOOP;r1
=
0
-
b;r2
=
a
+
a;r4=
r1+
r3;x1
=r4
/
r2;r5=
r1-
r3;x2
=
r5
/
r2;END
IF;END
IF;IF
(condition
=
1)THENCOMPUTATION
1;IF
(r1
<
0)
THENCOMPUTATION
2;ELSECOMPUTATION
3;FOR
i
=
1
to
3LOOPCOMPUTATION
4;ENDLOOP;COMPUTATION
5;END
IF;END
IF;COMPUTATION
1r1
=
b
*
b;r2
=
a
*
c;r2
=
r2
*
4;r1
=
r1
-
r2;COMPUTATION
2state
=
‘1’;COMPUTATION
3state
=
‘0’;
r3
=
r1
*
4;r3
=
r3
+
1;r3
=
r3
*
0.2;COMPUTATION
4r4
=
r1
/
r3;r3
=
r3
+
r4;r3
=
r3
/2;COMPUTATION
5
r1
=
0
-
b;r2
=
a
+
a;r4
=
r1
+
r3;x1
=
r4/r2;r5
=
r1
-
r3;x2
=
r5/r2;ComputationControlVon
annArchitectureArchitecture
Evolution62Universal
ArchitectureVon
annArchitectureInputOutputClockControlVectorsTest
DataDatapathMemoryControllerMemoryControl
Codes
ProgramThis
universal
architectureleads
to
different
structuresfor
ASIC
and
general
purposeprocessor.63ASP:
Datapath
and
ControllerDatapath
consists
in
resources,memories
and
interconnectionsDatapath
performs
functionalcalculation
according
toinputs.Datapath
operates
according
tocontrol-vectors
from
controller.Datapath
is
not
directly
controlledby
system
clock.Datapath
provides
necessary
test-data
tocontroller.Controller
consists
in
state
generatorand
control-vect
enerator.Controller
generates
control-vectorsaccording
to
test-data
and
data-flow.Controller
operates
according
tosystem
clock.ASP:
Application
SpecificProcessor
→
AISCAny
digital
system
can
becomposed
of
Datapath
andControllerASIC
Design:
High-Level
SynthesisInputOutputClockControlVectorsTest
DataDatapathMemoryControllerMemoryControl
Codes64ASIC
Design:
High-Level
SynthesisHardware:
High-Level
SynthesisHardwareDescriptionsOperation
SchedulingRegister
OptimizationResource
AllocationInterconnection
GenerationControl-Codes
GenerationState
GenerationFSM
DesignApplication
specified
architectureScheduling/allocation
during
designDepends
on
hardware
descriptionComponents
do
not
fully
connectedControl-Codes
cannot
be
changedState-Machine
is
not
programmed65InputOutputClockControlVectorsTest
DataDatapathMemoryControllerMemoryControl
Codes
ProgramGPP:
Datapath
and
ControllerGPP:
General
PurposeProcessor
→
MPUAny
processor
c
so
becomposed
of
Datapath
andControllerVon
annArchitectureDatapath
consists
in
resources,memories
and
interconnectionsDatapath
performs
functionalcalculation
according
toinputs.Datapath
operates
according
tocontrol-vectors
from
controller.Datapath
is
not
directly
controlledby
system
clock.Datapath
provides
necessary
test-data
tocontroller.Controller
consists
in
state
generatorand
control-vect
enerator.Controller
generates
control-vectorsaccording
to
test-data
and
program.Controller
operates
according
tosystem
clock.66General
Purpose
Processor
DesignSoftware:
High-Level
SynthesisApplicationProgramOperation
SchedulingRegister
OptimizationResource
AllocationInterconnection
GenerationControl-Codes
GenerationState
GenerationState
Machine
ProgrammingGeneral
purpose
architectureScheduling/allocation
during
compileinterconnection,
control-codes
andstate
are
generated
during
compileComponents
are
fully
connectedControl-Codes
can
be
changedState-Machineis
programmable67Datapath:
Uniform
ArchitectureReconfigurable
Computing+zx
yOperation
Operatorz=
x
+yVariableVariableVariableRegisterRegisterRegisterALU68RTL
StructureInput
BusOutput
BusALURegistersRegistersInput
BusOutput
BusRegistersALURegisters691-Dimension
Data-pathRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRegisterRTL
Architecture1-Dimension
Expansionx70Two-dimension
Expansion2-Dimension
Data-pathxy713-Dimension
Data-pathThree-dimension
Expansionxyz72Task-Flow
Map12367124567e
=
a
+
b;f
=
c
*
d;h
=
e
–
f;h
=
e
+
f;i=e
/
f;o1
=
g
*
h;o2
=
h
–
I;ab
cdefg4h5i3
73Memories
Map123671234567ab
cdefg4habcdef5ighie
=
a
+
b;f
=
c
*
d;h
=
e
–
f;h
=
e
+
f;i=e
/
f;o1
=g
*
h;o2
=
h
–
I;74Connections
ConfigurationInterconnections
among
operation
1,
operation
2and
operations
3,
operation
4,
operation
5
areconfigured
according
to
the
data
dependency.75abcdefghi1234567Power-GatingProcessors,
memories
andinterconnectionsthatarenot
used
will
bepowergated
in
order
to
decreasepower
consumption.7677ALU:
Multi-Function
UnitX-BusY-BusINPUTBUFFEROUTPUTBUFFERIN
InterfaceOUT
InterfaceContextStatusControllerContext
InterfaceIRQsController:
Programmable-FSMIF
(condition
=
1)
THENCOMPUTATION
1;IF
(r1
<
0)
THENCOMPUTATION
2;ELSECOMPUTATION3;FOR
i=1
to
3LOOPCOMPUTATION
4;ENDLOOP;COMPUTATION
5;END
IF;END
IF;43152i
≤3r1
≥0Computation
1Computation
2Computation
3Computation
4Computation
5i
>3r1
<0FSM:
Finite
State
MachineProgrammable78RISC
BasedProgrammable-FSMRB-PFSM:
1.
Read
current
state
from
State-MemoryDecide
next
state
and
generate
address
according
totest
data,
that
address
theData-Memory
andConfiguring-ContextOutput
the
data
and
configuring-contextRISCMemoryCompilerDatapathCompilerRISCState-MemoryData-MemoryConfiguring-ContextDatapathTest-DataTest-Data79Control-Flow
&
Configuring
ContextRegisterALURegisterRISCState
ControlState/Address
MemoryTest
DataGlobal
DataRegisterEn/DisableALU
Config.Connection
Config.Controller
DatapathGlobal-Data
MemoryConfiguring-ContextRegisterEnable/DisableALU-ContextConnection-ContextPower-ContextPower
Config.80Power
Consumption
ReductionOnly
one
row
works
each
timewhen
datapath
performscalculation.
Thus,
the
powerconsumption
of
datapath
isgreatly
reduced.81Multi-Task
Pipeline
ExecutionTask
1Task
2Task
3Task
4Tasks
areindependentNumber
oftasks
is
limitedby
the
size
ofdatapath82Basic
RequirementReconfigurable
ComputingNo
InstructionC
Language
ProgrammingDynamic
ReconfigurableLocalizing
CommunicationsLocalizing
MemoriesScalable
&
ExtendableNo
IPRIssuesExistingSoftwarePortingReducingMemoryWallImprovingFlexibilityHardwareFlexibilityReducingGlobalWires83Programming
LanguageHigh-Level
Programming
Language(Such
as:
ANSI
C)Int
main(void)func(…,
…){{…………func(…,
…)}……dct(…,
,,,)dct(…,…)……{…………}}ChallengesAvailable
softwareC
languagePointersLoopsRecursive
callVectormatrix….CompilerSyntax
CheckCode
ProfilingCode
TransformationCode
OptimizationData-Flow
GenerationTask
PartitioningTask
SchedulingAllocationConnection
SchemeMap
sEvaluationsContext
Generation84Dimension
Limited:
Task
MapTask
Partitioning
Task
Flow
GenerationTask
DependencyTask
SchedulingDatapath
AllocationMap
Scheme8586Partitioning
and
Deadlocka1a3a4a5a2inp
sv2sv13sv26sv33
sv39m6m7c1c2a8a9a12a11a15m13c3
a10m14c4a16a19a25a27inp
m21a18c5a22sv38m24a29c7a28sv18sv2_o
sv13_o
sv18_oa17a20m31a34a32c6a23sv18a26c8m30sv38a33sv26_o
sv33_o
sv38_o
sv39_o
out_psv39Task
Graph
Partitioning
(No
Deadlock)a1a3a4a5a2inp
sv2sv13sv26sv33
sv39m6m7c1c2a8a9a12a11a15m13c3
a10m14c4a16a19a25a27inp
m21a18c5a22sv38m24a29c7a28sv18sv2_o
sv13_o
sv18_oa17a20m31a34a32c6a23sv18a26c8m30sv38a33sv26_o
sv33_o
sv38_o
sv39_o
out_psv39Task
Graph
Partitioning
(Deadlock)RequirementsLess
interconnections(communication
cost)
between
sub-parts;Avoid
deadlock.Task
Graph
PartitioningGlobal
Datsinga1a3a4a5a2inp
sv2sv13sv26sv33sv39m6m7c1c2a8a9a12a11a15m13c3
a10m14c4a16a19a25a27inp
m21a18c5a22sv38m24a29c7a28sv18sv2_o
sv13_o
sv18_oa17a20m31a34a32c6a23sv18a26c8m30sv38a33sv26_o
sv33_o
sv38_o
sv39_o
out_psv39lobal
Data
MemoryCacheCacheGlobalDataMemoryCache87Operating
SystemMulti-Task
managementResource
managementTime
sharing
and
resource
sharingMulti-ControllerDynamic
Resource
allocationQueue-up88Integrated
Circuits
Golden
Moore
&
VonannNano-Electronics
EraGenerality
is
KingIntegrated
Circuits
and
ICTOutlines89ICT
=
(C
+
C)/(IC
+S)計算機通信集成電路經(jīng)濟(jì)超級計算機工作站個人計算機便攜式計算機掌上計算機有線通信光通信無線/移動通信網(wǎng)絡(luò)通信通信器信號處理器處理器可編程邏輯轉(zhuǎn)換器電路辦公數(shù)據(jù)庫操作系統(tǒng)中間件應(yīng)用905681013
14
141826222733465051556010277144132
137126149204166139
141
213248
2562492275%
2%27%46%-17%24%24%39%7%
2%
8%10%42%29%32%4%-9%-8%19%37%-32%1%28%18%7%
9%
3%-2.8%10%28%
28%
27%19%197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008Worldwide
Semiconductor
Market(B
USD)
Growth
Rate(%)Global
sales
of
semiconductors
were
severely
impacted
by
the
world-wide
economicturmoil
in
2008,
resulting
in
the
year-on-year
sales
drop
since
2001.Total
sales
for
2008
were
$249
billion
compared
to
$256
billion
in
2007,
a
decrease
of
2.8percent.Source:WSC
GAMS
Meeting
2009Global
Semi
Market:
1976-20089192364512059789733006701
1
.
7
%5
.
2
%1
5
.
2
%3
.
8
%1
4
.
2
%7
.
6
%9
.
0
%16%14%12%10%8%6%4%2%0%350000300000250000200000150000100000500000G
D
PGR
Y
2
YData
Source:National
Bureau
ofStatistics
(NBS)Source:Industry
Restructuring,IBS
Report,
2007GDP
of
China:
1978–2008
(Unit:
100M
RMB)GDP
vs.
Semi
Market:
1995-2007集成電路
和
是信息產(chǎn)業(yè)的基礎(chǔ),沒有自主的
和自主
,就沒有自主產(chǎn)業(yè)
的
“心”和“魂”。“缺心少魂”的產(chǎn)業(yè)是人家
的附庸,沒有發(fā)展的自主權(quán)。近50年,世界主要強國的發(fā)展歷叱證明,必須擁有自己的
技術(shù),尤其是集成電路和
這樣的
基礎(chǔ)產(chǎn)業(yè)。Source
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療行為侵害優(yōu)生優(yōu)育選擇權(quán)問題研究
- 基于微結(jié)構(gòu)光纖的低折射率傳感特性研究
- 二零二五年度城市綠地綠化養(yǎng)護(hù)服務(wù)協(xié)議
- 二零二五年度二手車過戶交易雙方責(zé)任保障協(xié)議
- 2025年度人工智能研發(fā)中心用工勞務(wù)雇傭合同
- 二零二五年度股權(quán)與合伙人協(xié)議書協(xié)同管理指導(dǎo)
- 2025年度教育機構(gòu)資金代管與監(jiān)管合同
- 2025年度租賃房屋租賃合同糾紛處理協(xié)議范本
- 二零二五年度LED道路燈具研發(fā)與推廣合作協(xié)議
- 2025年度深觀察韓國版廣場協(xié)議管窺:中韓能源安全合作框架協(xié)議
- 2023-2024學(xué)年度人教版一年級語文上冊寒假作業(yè)
- 軟件運維考核指標(biāo)
- 空氣動力學(xué)仿真技術(shù):格子玻爾茲曼方法(LBM)簡介
- 對表達(dá)方式進(jìn)行選擇與運用
- GB/T 18488-2024電動汽車用驅(qū)動電機系統(tǒng)
- 投資固定分紅協(xié)議
- 高二物理題庫及答案
- 職業(yè)發(fā)展展示園林
- 七年級下冊英語單詞默寫表直接打印
- 2024版醫(yī)療安全不良事件培訓(xùn)講稿
- 中學(xué)英語教學(xué)設(shè)計PPT完整全套教學(xué)課件
評論
0/150
提交評論