




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖中幾何體的主視圖是()A. B. C. D.2.方程的解是()A. B. C., D.,3.如圖,矩形AOBC,點C在反比例的圖象上,若,則的長是()A.1 B.2 C.3 D.44.關(guān)于反比例函數(shù),下列說法正確的是()A.圖象過(1,2)點 B.圖象在第一、三象限C.當(dāng)x>0時,y隨x的增大而減小 D.當(dāng)x<0時,y隨x的增大而增大5.下列運算中,正確的是().A.2xx2 B.x2yyx2 C.xx42x D.2x36x36.如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最大值為,則k的值為()A. B. C. D.7.在數(shù)軸上表示不等式﹣2≤x<4,正確的是()A. B.C. D.8.關(guān)于x的一元二次方程有實數(shù)根,則a的取值范圍是A. B. C. D.9.把方程的左邊配方后可得方程()A. B. C. D.10.反比例函數(shù)在第一象限的圖象如圖所示,則k的值可能是()A.3 B.5 C.6 D.8二、填空題(每小題3分,共24分)11.拋物線的頂點坐標是______________.12.如圖,在中,,,,用含和的代數(shù)式表示的值為:_________.13.如圖,在中,,,為邊上的一點,且,若的面積為,則的面積為__________.14.如圖,在中,,,點是邊的中點,點是邊上一個動點,當(dāng)__________時,相似.15.如圖,已知⊙O上三點A,B,C,半徑OC=,∠ABC=30°,切線PA交OC延長線于點P,則PA的長為____.16.從一副撲克牌中取出兩張紅桃和兩張黑桃,將這四張撲克牌洗勻后背面朝上,從中隨機摸出兩張牌,那么摸到兩張都是紅牌的概率是__________.17.用一個圓心角為150o,半徑為8的扇形作一個圓錐的側(cè)面,這個圓錐的底面圓的半徑為________.18.若最簡二次根式與是同類根式,則________.三、解答題(共66分)19.(10分)某中學(xué)準備舉辦一次演講比賽,每班限定兩人報名,初三(1)班的三位同學(xué)(兩位女生,一位男生)都想報名參加,班主任李老師設(shè)計了一個摸球游戲,利用已學(xué)過的概率知識來決定誰去參加比賽,游戲規(guī)則如下:在一個不透明的箱子里放3個大小質(zhì)地完全相同的乒乓球,在這3個乒乓球上分別寫上、、(每個字母分別代表一位同學(xué),其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機摸出一個乒乓球,不放回,再次攪勻后隨機摸出第二個乒乓球,根據(jù)乒乓球上的字母決定誰去參加比賽。(1)求李老師第一次摸出的乒乓球代表男生的概率;(2)請用列表或畫樹狀圖的方法求恰好選定一名男生和一名女生參賽的概率.20.(6分)已知:反比例函數(shù)和一次函數(shù),且一次函數(shù)的圖象經(jīng)過點.(1)試求反比例函數(shù)的解析式;(2)若點在第一象限,且同時在上述兩個函數(shù)的圖象上,求點的坐標.21.(6分)車輛經(jīng)過潤揚大橋收費站時,4個收費通道A.B、C、D中,可隨機選擇其中的一個通過.(1)一輛車經(jīng)過此收費站時,選擇A通道通過的概率是;(2)求兩輛車經(jīng)過此收費站時,選擇不同通道通過的概率.22.(8分)如圖,菱形的頂點在菱形的邊上,與相交于點,,若,,求菱形的邊長.23.(8分)如圖,網(wǎng)格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉(zhuǎn)中心,分別畫出把順時針旋轉(zhuǎn),后的,;(2)利用變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值.24.(8分)如圖,在平行四邊形ABCD中,CE是∠DCB的角平分線,且交AB于點E,DB與CE相交于點O,(1)求證:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.25.(10分)一個盒子中裝有兩個紅球,一個白球和一個藍球,這些球除顏色外都相同,從中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,請你用列表法和畫樹狀圖法求兩次摸到的球的顏色能配成紫色的概率(說明:紅色和藍色能配成紫色)26.(10分)如圖,在平面直角坐標系中,矩形的頂點分別在軸和軸的正半軸上,頂點的坐標為(4,2),的垂直平分線分別交于點,過點的反比例函數(shù)的圖像交于點.(1)求反比例函數(shù)的表示式;(2)判斷與的位置關(guān)系,并說明理由;(3)連接,在反比例函數(shù)圖像上存在點,使,直接寫出點的坐標.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】找到從正面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從正面看應(yīng)得到第一層有3個正方形,第二層從左面數(shù)第1個正方形上面有1個正方形,故選D.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.2、C【分析】先把從方程的右邊移到左邊,并把兩邊都除以4化簡,然后用因式分解法求解即可.【詳解】∵,∴,∴,∴,∴,.故選C.【點睛】本題考查了一元二次方程的解法,常用的方法有直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關(guān)鍵.3、B【分析】根據(jù)OB的長度即為點C的橫坐標,代入反比例函數(shù)的解析式中即可求出點C的縱坐標,即BC的長度,再根據(jù)矩形的性質(zhì)即可求出OA.【詳解】解:∵∴點C的橫坐標為1將點C的橫坐標代入中,解得y=2∴BC=2∵四邊形AOBC是矩形∴OA=BC=2故選B.【點睛】此題考查的是根據(jù)反比例函數(shù)解析式求點的坐標和矩形的性質(zhì),掌握根據(jù)反比例函數(shù)解析式求點的坐標和矩形的性質(zhì)是解決此題的關(guān)鍵.4、D【解析】試題分析:根據(jù)反比例函數(shù)y=(k≠0)的圖象k>0時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減小;k<0時位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大;在不同象限內(nèi),y隨x的增大而增大.可由k=-2<0,所以函數(shù)圖象位于二四象限,在每一象限內(nèi)y隨x的增大而增大,圖象是軸對稱圖象,故A、B、C錯誤.故選D.考點:反比例函數(shù)圖象的性質(zhì)5、B【分析】根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母的指數(shù)不變;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.【詳解】A.2xxx,故本選項錯誤,B.x2yyx2,故本選項正確,C.,故本選項錯誤,D.,故本選項錯誤.故選B.【點睛】此題考查冪的乘方與積的乘方、合并同類項、同底數(shù)冪的除法,解題關(guān)鍵在于掌握運算法則.6、C【解析】如圖,連接BP,由反比例函數(shù)的對稱性質(zhì)以及三角形中位線定理可得OQ=BP,再根據(jù)OQ的最大值從而可確定出BP長的最大值,由題意可知當(dāng)BP過圓心C時,BP最長,過B作BD⊥x軸于D,繼而根據(jù)正比例函數(shù)的性質(zhì)以及勾股定理可求得點B坐標,再根據(jù)點B在反比例函數(shù)y=(k>0)的圖象上,利用待定系數(shù)法即可求出k的值.【詳解】如圖,連接BP,由對稱性得:OA=OB,∵Q是AP的中點,∴OQ=BP,∵OQ長的最大值為,∴BP長的最大值為×2=3,如圖,當(dāng)BP過圓心C時,BP最長,過B作BD⊥x軸于D,∵CP=1,∴BC=2,∵B在直線y=2x上,設(shè)B(t,2t),則CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣,∴B(﹣,﹣),∵點B在反比例函數(shù)y=(k>0)的圖象上,∴k=﹣×(-)=,故選C.【點睛】本題考查的是代數(shù)與幾何綜合題,涉及了反比例函數(shù)圖象上點的坐標特征,中位線定理,圓的基本性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,確定出BP過點C時OQ有最大值是解題的關(guān)鍵.7、A【分析】根據(jù)不等式的解集在數(shù)軸上表示出來即可.【詳解】解:在數(shù)軸上表示不等式﹣2≤x<4的解集為:故選:A.【點睛】此題主要考查不等式解集的表示,解題的關(guān)鍵是熟知不等式解集的表示方法.8、A【解析】試題分析:根據(jù)一元二次方程的意義,可知a≠0,然后根據(jù)一元二次方程根的判別式,可由有實數(shù)根得△=b2-4ac=1-4a≥0,解得a≤,因此可知a的取值范圍為a≤且a≠0.點睛:此題主要考查了一元二次方程根的判別式,解題關(guān)鍵是根據(jù)一元二次方程根的個數(shù)判斷△=b2-4ac的值即可.注意:當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的十?dāng)?shù)根;當(dāng)△<0時,方程沒有實數(shù)根.9、A【分析】首先把常數(shù)項移項后,再在左右兩邊同時加上一次項系數(shù)的一半的平方,繼而可求得答案.【詳解】,,,.故選:.【點睛】此題考查了配方法解一元二次方程的知識,此題比較簡單,注意掌握配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.10、B【分析】根據(jù)點(1,3)在反比例函數(shù)圖象下方,點(3,2)在反比例函數(shù)圖象上方可得出k的取值范圍,即可得答案.【詳解】∵點(1,3)在反比例函數(shù)圖象下方,∴k>3,∵點(3,2)在反比例函數(shù)圖象上方,∴<2,即k<6,∴3<k<6,故選:B.【點睛】本題考查了反比例函數(shù)的圖象的性質(zhì),熟記k=xy是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、(0,-1)【分析】拋物線的解析式為:y=ax2+k,其頂點坐標是(0,k),可以確定拋物線的頂點坐標.【詳解】拋物線的頂點坐標是(0,-1).12、【分析】分別在Rt△ABC和Rt△ADC中用AC和的三角函數(shù)表示出AB和AD,進一步即可求出結(jié)果.【詳解】解:在Rt△ABC中,∵,∴,在Rt△ADC中,∵,∴,∴.故答案為:.【點睛】本題考查了三角函數(shù)的知識,屬于??碱}型,熟練掌握正弦的定義是解題的關(guān)鍵.13、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根據(jù)面積比等于相似比的平方可求出△BAC的面積,減去△ADC的面積即為△ABD的面積.【詳解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比則面積比∴∴故答案為:1.【點睛】本題考查了相似三角形的判定與性質(zhì),熟記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.14、【分析】直接利用,找到對應(yīng)邊的關(guān)系,即可得出答案.【詳解】解:當(dāng)時,
則,
∵,點是邊的中點,
∴∵,∴則綜上所述:當(dāng)BQ=時,.
故答案為:.【點睛】此題主要考查了相似三角形的性質(zhì),得到對應(yīng)邊成比例是解答此題的關(guān)鍵.15、1【分析】連接OA,根據(jù)圓周角定理求出∠AOP,根據(jù)切線的性質(zhì)求出∠OAP=90°,解直角三角形求出AP即可.【詳解】連接OA,∵∠ABC=10°,∴∠AOC=2∠ABC=60°,∵切線PA交OC延長線于點P,∴∠OAP=90°,∵OA=OC=,∴AP=OAtan60°=×=1.故答案為:1.【點睛】本題考查了圓的切線問題,掌握圓周角定理、圓的切線性質(zhì)是解題的關(guān)鍵.16、【分析】根據(jù)題意列出所有等可能的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】所有情況數(shù):紅桃1,紅桃2紅桃1,黑桃1紅桃1,黑桃2紅桃2,黑桃1紅桃2,黑桃2黑桃1,黑桃2共有6種等可能的情況,其中符合的有1種,所以概率為【點睛】本題主要考查概率的求法.17、【分析】根據(jù)扇形條件計算出扇形弧長,由此得到其所圍成的圓錐的底面圓周長,由圓的周長公式計算底面圓的半徑.【詳解】∵圓心角為150o,半徑為8∴扇形弧長:∴其圍成的圓錐的底面圓周長為:∴設(shè)底面圓半徑為則,得故答案為:.【點睛】本題考查了扇形弧長的計算,及扇形與圓錐之間的對應(yīng)關(guān)系,熟知以上內(nèi)容是解題的關(guān)鍵.18、1【分析】根據(jù)同類二次根式的定義可得a+2=5a-2,即可求出a值.【詳解】∵最簡二次根式與是同類根式,∴a+2=5a-2,解得:a=1.故答案為:1【點睛】本題考查了同類二次根式:把各二次根式化為最簡二次根式后若被開方數(shù)相同,那么這樣的二次根式叫同類二次根式;熟記定義是解題關(guān)鍵.三、解答題(共66分)19、(1)李老師第一次摸出的乒乓球代表男生的概率為;(2)恰好選定一名男生和t名女生參賽的概率為.【分析】(1)共3個球,第一次摸出的乒乓球代表男生的有1種,即可利用概率公式求得結(jié)果;(2)列樹狀圖即可解答.【詳解】(1)共有3個球,第一次摸出的乒乓球代表男生的有1種情況,∴第一次摸出的乒乓球代表男生的概率為;(2)樹狀圖如下:共有6種等可能的情況,其中恰好選定一名男生和一名女生參賽的有4種,∴P(恰好選定一名男生和一名女生參賽)=.【點睛】此題考查事件概率的求法,簡單事件的概率可直接利用公式計算,復(fù)雜事件的概率可利用列樹狀圖解答,解題中注意事件是屬于“放回”或是“不放回”事件.20、(1);(2).【分析】(1)將點代入中即可求出k的值,求得反比例函數(shù)的解析式;(2)根據(jù)題意列出方程組,根據(jù)點在第一象限解出方程組即可.【詳解】(1)一次函數(shù)的圖象經(jīng)過點反比例函數(shù)的解析式為(2)由已知可得方程組,解得或經(jīng)檢驗,當(dāng)或時,,所以方程組的解為或∵點在第一象限∴【點睛】本題考查了一次函數(shù)和反比例函數(shù)的問題,掌握一次函數(shù)和反比例函數(shù)的性質(zhì)、解二元一次方程組的方法是解題的關(guān)鍵.21、(1);(2).【解析】試題分析:(1)根據(jù)概率公式即可得到結(jié)論;(2)畫出樹狀圖即可得到結(jié)論.試題解析:(1)選擇A通道通過的概率=,故答案為;(2)設(shè)兩輛車為甲,乙,如圖,兩輛車經(jīng)過此收費站時,會有16種可能的結(jié)果,其中選擇不同通道通過的有12種結(jié)果,∴選擇不同通道通過的概率==.22、9【分析】連接,首先證明是等邊三角形,再證明,推出,由此構(gòu)建方程即可解決問題.【詳解】解:連接.在菱形和菱形中,,,是等邊三角形,設(shè),則,,,,,,,,,,,或1(舍棄),,【點睛】本題考查相似多邊形的性質(zhì),等邊三角形的性質(zhì),菱形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考??碱}型.23、(1)見解析;(2)①四邊形是正方形,四邊形是正方形;②【分析】(1)根據(jù)題意畫出圖形即可.(2)①根據(jù)圖形寫出答案即可,②根據(jù)表格的格數(shù)算出四邊形面積再代入求解即可.【詳解】(1)如圖:(2)①四邊形是正方形,四邊形是正方形;②由圖象得四邊形=18,四邊形=10∴=.【點睛】本題考查作圖能力,關(guān)鍵在于理解題意畫出圖形.24、(1)證明見解析(1)【解析】試題分析:(1)欲證明△EBC是等腰三角形,只需推知BC=BE即可,可以由∠1=∠3得到:BC=BE;(1)通過相似三角形△COD∽△EOB的對應(yīng)邊成比例得到,然后利用分式的性質(zhì)可以求得.解:(1)∵四邊形ABCD是平行四邊形,∴CD∥AB,∴∠1=∠1.∵CE平分∠BCD,∴∠1=∠3,∴∠1=∠3,∴BC=BE,∴△EBC是等腰三角形;(1)∵∠1=∠1,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四邊形ABCD,∴CD=AB=2.∵BE=BC=5,∴==,∴=.點睛:本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)以及等腰三角形的判定.在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 多項式合并與去括號課件教程
- 公司法務(wù)管理與知識產(chǎn)權(quán)策略課件
- 診斷學(xué)基礎(chǔ)模擬題含答案(附解析)
- 小螞蟻兒童創(chuàng)意美術(shù)課件
- 營林機械在災(zāi)害防治中的作用考核試卷
- 智能物流車設(shè)計
- 森林火災(zāi)心理干預(yù)考核試卷
- 《大數(shù)據(jù)處理技術(shù):Hadoop培訓(xùn)》課件
- 羽毛球運動器材及配件制造考核試卷
- 展館設(shè)計案例分析
- 河南五市2025年高三俄語二模試卷(無答案)
- 2025-2030中國旅游景區(qū)行業(yè)市場發(fā)展現(xiàn)狀及前景趨勢與投資發(fā)展研究報告
- 2025年全國保密教育線上培訓(xùn)考試試題庫及參考答案(典型題)帶答案詳解
- 2024年河北省邯鄲縣事業(yè)單位公開招聘村務(wù)工作者筆試題帶答案
- 9.2 歐洲西部課件3-2024-2025學(xué)年七年級地理下學(xué)期人教版2024
- 2024年山東泰安岱岳區(qū)職業(yè)教育中心招聘筆試真題
- 喝酒受傷賠償協(xié)議書模板
- 2025年廣東廣州市高三二模高考英語試卷試題(含答案詳解)
- 期中考試質(zhì)量分析會上校長引用6個關(guān)鍵詞講話:深耕、融合、賦能、深耕、創(chuàng)新、協(xié)同、堅守
- 掛靠法人免責(zé)協(xié)議書
- 碳中和技術(shù)概論全套教學(xué)課件
評論
0/150
提交評論